論文の概要: From Optimization to Generalization: Fair Federated Learning against Quality Shift via Inter-Client Sharpness Matching
- arxiv url: http://arxiv.org/abs/2404.17805v2
- Date: Wed, 18 Dec 2024 06:46:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:39.871853
- Title: From Optimization to Generalization: Fair Federated Learning against Quality Shift via Inter-Client Sharpness Matching
- Title(参考訳): 最適化から一般化へ:クライアント間シャープネスマッチングによる品質変化に対する公正なフェデレーション学習
- Authors: Nannan Wu, Zhuo Kuang, Zengqiang Yan, Li Yu,
- Abstract要約: フェデレートラーニングは、分散化された医療データでディープニューラルネットワークをトレーニングするための重要なアプローチとして認識されている。
実際には、様々な施設で一貫した画像品質を確保することは困難である。
この画像品質の不均衡は、フェデレートされたモデルが高品質な画像に対して固有のバイアスを生じさせる可能性がある。
- 参考スコア(独自算出の注目度): 10.736121438623003
- License:
- Abstract: Due to escalating privacy concerns, federated learning has been recognized as a vital approach for training deep neural networks with decentralized medical data. In practice, it is challenging to ensure consistent imaging quality across various institutions, often attributed to equipment malfunctions affecting a minority of clients. This imbalance in image quality can cause the federated model to develop an inherent bias towards higher-quality images, thus posing a severe fairness issue. In this study, we pioneer the identification and formulation of this new fairness challenge within the context of the imaging quality shift. Traditional methods for promoting fairness in federated learning predominantly focus on balancing empirical risks across diverse client distributions. This strategy primarily facilitates fair optimization across different training data distributions, yet neglects the crucial aspect of generalization. To address this, we introduce a solution termed Federated learning with Inter-client Sharpness Matching (FedISM). FedISM enhances both local training and global aggregation by incorporating sharpness-awareness, aiming to harmonize the sharpness levels across clients for fair generalization. Our empirical evaluations, conducted using the widely-used ICH and ISIC 2019 datasets, establish FedISM's superiority over current state-of-the-art federated learning methods in promoting fairness. Code is available at https://github.com/wnn2000/FFL4MIA.
- Abstract(参考訳): プライバシー上の懸念がエスカレートするため、フェデレートされた学習は、分散化された医療データでディープニューラルネットワークをトレーニングするための重要なアプローチとして認識されている。
実際には、様々な施設で一貫した画像品質を確保することは困難であり、多くの場合、少数の顧客に影響を与える機器の故障によるものである。
この画像品質の不均衡は、フェデレートされたモデルが高品質な画像に対して固有のバイアスを生じさせる可能性があるため、深刻な公平性の問題を引き起こす。
本研究では,画像品質変化の文脈において,この新たなフェアネスチャレンジの識別と定式化を開拓する。
連合学習における公正性を促進する伝統的な手法は、主に多様なクライアント分布にまたがる経験的リスクのバランスに重点を置いている。
この戦略は、主に異なるトレーニングデータ分布の公平な最適化を促進するが、一般化の重要な側面を無視する。
そこで我々は,FedISM (Inter-client Sharpness Matching) を用いたフェデレートラーニング(Federated Learning)という手法を提案する。
FedISMは、クライアント間のシャープネスレベルを調和させ、公正な一般化を目指して、シャープネス認識を取り入れたローカルトレーニングとグローバルアグリゲーションの両方を強化する。
ICHとISIC 2019データセットを用いて実施した経験的評価は、現在の最先端のフェデレート学習法よりもフェデレーションの優位性を確立し、公正性を促進する。
コードはhttps://github.com/wnn2000/FFL4MIAで入手できる。
関連論文リスト
- Enhancing Group Fairness in Federated Learning through Personalization [15.367801388932145]
パーソナライゼーションは、意図しない利益として、改善された(局所的な)公正性をもたらす可能性があることを示す。
本稿では,Fair-FCAとFair-FL+HCという2つの新しいフェアネス対応クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-27T19:55:18Z) - Enhancing Fairness in Neural Networks Using FairVIC [0.0]
自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
FairVICは、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的なアプローチである。
我々は、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標の公平性を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREEは、分散化された環境で分散のないフェアラーニングのために小さなサンプルで開発された後処理アルゴリズムである。
公正性と精度の両面において厳密な理論的保証を提供し,実験結果により,提案手法の堅牢な実証検証を行う。
論文 参考訳(メタデータ) (2024-02-25T17:37:53Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FAIR-FATE: Fair Federated Learning with Momentum [0.41998444721319217]
本研究では,グループフェアネスの達成を目的としたFAIRフェデレート学習アルゴリズムを提案する。
我々の知る限りでは、公正なモメンタム推定を用いて公平性を達成することを目的とした機械学習における最初のアプローチである。
実世界のデータセットに対する実験結果から、FAIR-FATEは最先端のフェデレート学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2022-09-27T20:33:38Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
クロスサイロ・フェデレーション・ラーニング (FL) は近年, 深層学習による医用画像解析において注目されている。
FLでトレーニングされたモデルと、集中的なトレーニングでトレーニングされたモデルの間にはギャップがある。
本稿では,クライアントの問題を回避し,ドリフトギャップを解消するための新しいトレーニングフレームワークであるFedSMを提案する。
論文 参考訳(メタデータ) (2022-03-18T19:50:07Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
フェデレーテッド・ラーニングは、複数のパーティで機械学習モデルを学習するための有望なソリューションと見なされている。
フェアネスを意識したアグリゲーション手法によりグループフェアネスを高める新しいアルゴリズムであるFairFedを提案する。
提案手法は,高度の不均一な属性分布の下で,最先端の公正な学習フレームワークよりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-02T17:55:20Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
ブロックチェーンベースの信頼できるフェデレーション学習アーキテクチャを提案する。
まず、説明責任を実現するために、スマートコントラクトベースのデータモデル証明レジストリを設計する。
また、トレーニングデータの公平性を高めるために、重み付き公正データサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-16T06:13:58Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。