論文の概要: Enhancing Group Fairness in Federated Learning through Personalization
- arxiv url: http://arxiv.org/abs/2407.19331v2
- Date: Thu, 3 Oct 2024 00:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:38:53.634939
- Title: Enhancing Group Fairness in Federated Learning through Personalization
- Title(参考訳): 個人化によるフェデレーション学習におけるグループフェアネスの強化
- Authors: Yifan Yang, Ali Payani, Parinaz Naghizadeh,
- Abstract要約: パーソナライゼーションは、意図しない利益として、改善された(局所的な)公正性をもたらす可能性があることを示す。
本稿では,Fair-FCAとFair-FL+HCという2つの新しいフェアネス対応クラスタリングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 15.367801388932145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized Federated Learning (FL) algorithms collaboratively train customized models for each client, enhancing the accuracy of the learned models on the client's local data (e.g., by clustering similar clients, by fine-tuning models locally, or by imposing regularization terms). In this paper, we investigate the impact of such personalization techniques on the group fairness of the learned models, and show that personalization can also lead to improved (local) fairness as an unintended benefit. We begin by illustrating these benefits of personalization through numerical experiments comparing several classes of personalized FL algorithms against a baseline FedAvg algorithm, elaborating on the reasons behind improved fairness using personalized FL, and then providing analytical support. Motivated by these, we then show how to build on this (unintended) fairness benefit, by further integrating a fairness metric into the cluster-selection procedure of clustering-based personalized FL algorithms, and improve the fairness-accuracy trade-off attainable through them. Specifically, we propose two new fairness-aware federated clustering algorithms, Fair-FCA and Fair-FL+HC, extending the existing IFCA and FL+HC algorithms, and demonstrate their ability to strike a (tuneable) balance between accuracy and fairness at the client level.
- Abstract(参考訳): パーソナライズド・フェデレーション・ラーニング(FL)アルゴリズムは、各クライアント向けにカスタマイズされたモデルを協調的にトレーニングし、クライアントのローカルデータ(例えば、類似したクライアントをクラスタリングしたり、局所的に微調整したり、正規化用語を付与したりすることで、学習したモデルの精度を高める。
本稿では,このようなパーソナライズ手法が学習モデルのグループフェアネスに与える影響について検討し,パーソナライズが意図しないメリットとして改善(局所フェアネス)につながることを示す。
まず,パーソナライズされたFLアルゴリズムのいくつかのクラスをベースラインのFedAvgアルゴリズムと比較し,パーソナライズされたFLを用いたフェアネス向上の背景にある理由を解明し,分析的支援を行うことで,パーソナライズによるパーソナライゼーションのメリットを実証することから始める。
これらを動機として,クラスタリングに基づくパーソナライズされたFLアルゴリズムのクラスタ選択手順にフェアネスメトリックをさらに統合することにより,この(意図しない)フェアネスのメリットの上に構築する方法を示し,それらを通じて達成可能なフェアネスと精度のトレードオフを改善する。
具体的には、Fair-FCAとFair-FL+HCという2つの新しいフェアネス対応フェデレーションクラスタリングアルゴリズムを提案し、既存のIFCAとFL+HCアルゴリズムを拡張し、クライアントレベルでの精度とフェアネスのバランスをとる能力を示す。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated Learning(FL)は、分散クライアントデータセット間の共通性を利用してグローバルモデルをトレーニングする分散学習フレームワークである。
パーソナライズド・フェデレーション・ラーニング(PFL)は、各クライアントに適した個々のモデルを学習することで、この問題に対処しようとしている。
我々は,グローバルな生成型分類器を局所的な特徴分布に適応させることで,パーソナライズされたモデルを効率的に生成するアルゴリズム,pFedFDAを提案する。
論文 参考訳(メタデータ) (2024-11-01T03:03:52Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
フェデレートラーニング(FL)では、クライアントデータの分散の性質と均一性は、機会と課題の両方を示します。
本稿では,FLトレーニングに参加するクライアントに対して適応的なアグリゲーション重みを割り当てるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T17:46:37Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
フェデレートラーニング(FL)は、グローバルモデルが分散クライアントのプライベートデータに基づいてトレーニングされる、重要な機械学習パラダイムとして登場した。
近年の研究では、顧客間の公平性に焦点が当てられているが、センシティブな属性(例えば、性別や人種)によって形成される異なるグループに対する公正性は無視されている。
本稿では,G-DRFA (Group Distributionally Robust Federated Averaging) と呼ばれる新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-09T08:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。