論文の概要: Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach
- arxiv url: http://arxiv.org/abs/2404.17943v1
- Date: Sat, 27 Apr 2024 15:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:32:14.055063
- Title: Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach
- Title(参考訳): マルチリレーショナル再帰型ハイパーグラフにおけるインタラクションイベント予測:時間的ポイントプロセスアプローチ
- Authors: Tony Gracious, Ambedkar Dukkipati,
- Abstract要約: 本研究は,マルチリレーショナル再帰的ハイパーグラフにおける高次相互作用事象の予測問題に対処する。
提案したモデルであるtextitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP) は,歴史的相互作用パターンに基づいて動的ノード表現を学習するエンコーダを使用する。
我々は,従来のインタラクション予測手法よりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 12.142292322071299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling the dynamics of interacting entities using an evolving graph is an essential problem in fields such as financial networks and e-commerce. Traditional approaches focus primarily on pairwise interactions, limiting their ability to capture the complexity of real-world interactions involving multiple entities and their intricate relationship structures. This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs. This is done using a dynamic graph representation learning framework that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction based decoder to model the event's occurrence. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we use noise contrastive estimation to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
- Abstract(参考訳): 進化するグラフを用いて相互作用するエンティティのダイナミクスをモデル化することは、金融ネットワークやeコマースといった分野において重要な問題である。
伝統的なアプローチは、主にペアの相互作用に焦点を当て、複数の実体と複雑な関係構造を含む現実世界の相互作用の複雑さを捉える能力を制限する。
本研究は,マルチリレーショナル再帰的ハイパーグラフにおける高次相互作用事象の予測問題に対処する。
これは動的グラフ表現学習フレームワークを使用して行われ、複数のエンティティを含む複雑な関係をキャプチャすることができる。
提案モデルでは,履歴的相互作用パターンに基づいて動的ノード表現を学習するエンコーダを用いて,イベントの発生をモデル化するハイパーエッジリンク予測に基づくデコーダを提案する。
これらの学習された表現は、対話のタイプと時間を予測することを含む下流タスクに使用される。
ハイパーエッジイベントから学ぶ上での大きな課題は、ネットワーク内のノード数とともに、考えられるハイパーエッジの数が指数関数的に増加することだ。
これにより、生存関数の計算は、可能なすべてのハイパーエッジの和を必要とするため、時間点過程の負の対数類似性の計算が高価になる。
本研究では,ノイズコントラスト推定を用いてモデルのパラメータを学習し,従来のインタラクション予測手法よりも優れた性能を示すことを示す。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Neural Temporal Point Process for Forecasting Higher Order and Directional Interactions [10.803714426078642]
本稿では,ハイパーエッジイベント予測のための,ディープニューラルネットワークに基づくテキスト指向ハイパーNodeテンポラルポイントプロセスを提案する。
提案手法は,イベントが観測されるノードを最初に予測することで,探索空間を縮小する。
これらに基づいて、候補のハイパーエッジを生成し、それをハイパーエッジ予測器が使用して、基底の真理を識別する。
論文 参考訳(メタデータ) (2023-01-28T14:32:14Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
MTD-GNNは,複数種類の関係に対して時間動的エッジを予測するグラフネットワークである。
時間-動的グラフネットワークにおける複数の関係をモデル化することは相互に有益であることを示す。
論文 参考訳(メタデータ) (2022-12-06T10:41:00Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
マルチビヘイビア・インタラクティブなパターンを意識した動的ユーザ・イテム関係学習に取り組む。
本稿では,動的短期および長期のユーザ・イテム対話パターンを共同でキャプチャする,TGT(Temporal Graph Transformer)レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T15:42:54Z) - Principled inference of hyperedges and overlapping communities in
hypergraphs [0.0]
本稿では,ハイパーグラフの構造的構造を特徴付けるための統計的推測に基づく枠組みを提案する。
我々は,ハイパーエッジ予測タスクにおいて強い性能を示し,相互作用によってもたらされる情報に順応したコミュニティの検出,ノイズの多いハイパーエッジの追加に対する堅牢性を示した。
論文 参考訳(メタデータ) (2022-04-12T09:13:46Z) - Dynamic Representation Learning with Temporal Point Processes for
Higher-Order Interaction Forecasting [8.680676599607123]
本稿では,これらの問題に対処するためのハイパーエッジ予測のための時間点プロセスモデルを提案する。
私たちの知る限りでは、動的ネットワークのハイパーエッジを予測するために時間点プロセスを使った最初の研究である。
論文 参考訳(メタデータ) (2021-12-19T14:24:37Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。