論文の概要: Principled inference of hyperedges and overlapping communities in
hypergraphs
- arxiv url: http://arxiv.org/abs/2204.05646v1
- Date: Tue, 12 Apr 2022 09:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 14:38:42.556086
- Title: Principled inference of hyperedges and overlapping communities in
hypergraphs
- Title(参考訳): ハイパーグラフにおけるハイパーエッジと重複コミュニティの原理推論
- Authors: Martina Contisciani, Federico Battiston, Caterina De Bacco
- Abstract要約: 本稿では,ハイパーグラフの構造的構造を特徴付けるための統計的推測に基づく枠組みを提案する。
我々は,ハイパーエッジ予測タスクにおいて強い性能を示し,相互作用によってもたらされる情報に順応したコミュニティの検出,ノイズの多いハイパーエッジの追加に対する堅牢性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hypergraphs, encoding structured interactions among any number of system
units, have recently proven a successful tool to describe many real-world
biological and social networks. Here we propose a framework based on
statistical inference to characterize the structural organization of
hypergraphs. The method allows to infer missing hyperedges of any size in a
principled way, and to jointly detect overlapping communities in presence of
higher-order interactions. Furthermore, our model has an efficient numerical
implementation, and it runs faster than dyadic algorithms on pairwise records
projected from higher-order data. We apply our method to a variety of
real-world systems, showing strong performance in hyperedge prediction tasks,
detecting communities well aligned with the information carried by
interactions, and robustness against addition of noisy hyperedges. Our approach
illustrates the fundamental advantages of a hypergraph probabilistic model when
modeling relational systems with higher-order interactions.
- Abstract(参考訳): ハイパーグラフは、様々なシステムユニット間で構造化された相互作用を符号化し、多くの現実世界の生物学的および社会的ネットワークを記述するのに成功している。
本稿では,ハイパーグラフの構造構造を特徴付ける統計的推論に基づく枠組みを提案する。
この方法では、任意の大きさの欠落したハイパーエッジを原則的に推測し、高次相互作用の存在下で重なり合うコミュニティを共同で検出することができる。
さらに,本モデルでは,高次データから投影されるペアワイドレコード上で,動的アルゴリズムよりも高速に動作可能である。
提案手法を実世界の様々なシステムに適用し,ハイパーエッジ予測タスクの強い性能,インタラクションによってもたらされる情報に順応したコミュニティの検出,ノイズの多いハイパーエッジの追加に対する堅牢性を示す。
提案手法は,高次相互作用を持つ関係系をモデル化する際のハイパーグラフ確率モデルの基本的利点を示す。
関連論文リスト
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
本稿では,非教師付き手法で遅延ハイパーグラフ構造を推論するモデルであるハイパーグラフ推論ネットワーク(SPHINX)を用いた構造予測を提案する。
k-サブセットサンプリングの最近の進歩は、離散ハイパーグラフ構造を生成するのに適したツールであることを示す。
結果として得られるモデルは、現代のハイパーグラフニューラルネットワークに必要な高次構造を生成することができる。
論文 参考訳(メタデータ) (2024-10-04T07:49:57Z) - Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach [12.142292322071299]
本研究は,マルチリレーショナル再帰的ハイパーグラフにおける高次相互作用事象の予測問題に対処する。
提案したモデルであるtextitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP) は,歴史的相互作用パターンに基づいて動的ノード表現を学習するエンコーダを使用する。
我々は,従来のインタラクション予測手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-04-27T15:46:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Nonparametric Embeddings of Sparse High-Order Interaction Events [21.758306786651772]
高次相互作用イベントは現実世界のアプリケーションでは一般的である。
スパース高次相互作用イベントの非埋め込みを提案する。
我々は効率的でスケーラブルなモデル推論アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-08T01:25:34Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Measuring dynamical systems on directed hyper-graphs [0.0]
我々は、有向ハイパーグラフの構造と、その上に定義されたランダムウォークである線形力学系との間の相互作用を解析する。
遷移行列のような一対構造に既知の測度を適用し、そのような手順に順応可能な測度群を決定する。
論文 参考訳(メタデータ) (2022-02-25T16:39:40Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
本稿では,周辺情報をグラフ誘導ガウス分布でエンコードし,その2種類の情報をグラフ駆動生成モデルと統合することを提案する。
この近似の下では、トレーニング対象がシングルトンまたはペアワイズ文書のみを含む用語に分解可能であることを証明し、モデルが非関連文書と同じくらい効率的にトレーニングできることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:29:03Z) - Community Detection in General Hypergraph via Graph Embedding [1.4213973379473654]
本研究では,一般のハイパーグラフネットワーク,均一あるいは非均一なコミュニティ構造を検出する新しい方法を提案する。
提案手法では,非一様ハイパーグラフを均一なマルチハイパーグラフに拡張するヌルを導入し,低次元ベクトル空間にマルチハイパーグラフを埋め込む。
論文 参考訳(メタデータ) (2021-03-28T03:23:03Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。