On Efficient Solutions of General Structured Markov Processes in Quantum Computational Environments
- URL: http://arxiv.org/abs/2404.17959v2
- Date: Mon, 16 Jun 2025 21:24:17 GMT
- Title: On Efficient Solutions of General Structured Markov Processes in Quantum Computational Environments
- Authors: Vasileios Kalantzis, Mark S. Squillante, Shashanka Ubaru,
- Abstract summary: We devise the first quantum algorithms for computing the stationary distribution of general structured Markov processes.<n>Although motivated by general structured Markov processes, our quantum algorithms can be exploited to address a much larger class of numerical computation problems.
- Score: 8.26313272946503
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study from a theoretical viewpoint the fundamental problem of efficiently computing the stationary distribution of general classes of structured Markov processes. In strong contrast with previous work, we consider this fundamental problem within the context of quantum computational environments from a mathematical perspective and devise the first quantum algorithms for computing the stationary distribution of general structured Markov processes. We derive a mathematical analysis of the computational properties of our quantum algorithms together with related theoretical results, establishing that our quantum algorithms provide the potential for significant computational improvements over that of the best-known and most-efficient classical algorithms in various settings of both theoretical and practical importance. Although motivated by general structured Markov processes, our quantum algorithms can be exploited to address a much larger class of numerical computation problems, as well as to potentially play the role of a subroutine as part of solving larger computational problems involving the stationary distribution on a quantum computer.
Related papers
- A Quantum Genetic Algorithm Framework for the MaxCut Problem [49.59986385400411]
The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles.<n>On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefinite Programming (SDP) approach.<n>On ErdHos-R'enyi random graphs, the QGA demonstrates competitive performance, achieving median solutions within 92-96% of the SDP results.
arXiv Detail & Related papers (2025-01-02T05:06:16Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Maximizing the practical achievability of quantum annealing attacks on factorization-based cryptography [0.0]
This work focuses on quantum methods for cryptanalysis of schemes based on the integer factorization problem and the discrete logarithm problem.
We demonstrate how to practically solve the largest instances of the factorization problem by improving an approach that combines quantum and classical computations.
arXiv Detail & Related papers (2024-10-07T11:55:23Z) - A typology of quantum algorithms [1.967426628955258]
We draw the current landscape of quantum algorithms, by classifying about 130 quantum algorithms.
The primary objectives include revealing trends of algorithms, identifying promising fields for implementations in the NISQ era, and identifying the key algorithmic primitives that power quantum advantage.
arXiv Detail & Related papers (2024-07-06T20:41:05Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Quantum algorithms for group convolution, cross-correlation, and
equivariant transformations [9.134244356393665]
Group convolutions and cross-correlations are commonly used in mathematics to analyze or take advantage of symmetries inherent in a given problem setting.
Here, we provide efficient quantum algorithms for performing linear group convolutions and cross-correlations on data stored as quantum states.
arXiv Detail & Related papers (2021-09-23T12:21:31Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Approximating the quantum approximate optimization algorithm with
digital-analog interactions [0.0]
We show that the digital-analog paradigm is suited to the variational quantum approximate optimisation algorithm.
We observe regimes of single-qubit operation speed in which the considered variational algorithm provides a significant improvement over non-variational counterparts.
arXiv Detail & Related papers (2020-02-27T16:01:40Z) - Quantum computation of thermal averages in the presence of a sign
problem [45.82374977939355]
We illustrate the application of Quantum Computing techniques to the investigation of the thermodynamical properties of a simple system.
We show how quantum algorithms completely solve the problem, and discuss how this can apply to more complex systems of physical interest.
arXiv Detail & Related papers (2020-01-15T14:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.