論文の概要: Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models
- arxiv url: http://arxiv.org/abs/2411.11389v1
- Date: Mon, 18 Nov 2024 09:03:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:47.561623
- Title: Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models
- Title(参考訳): サイバー脅威に適応する:大規模言語モデルを用いたフィッシング生成と進化パターン解析のためのフィッシング進化ネットワーク(PEN)フレームワーク
- Authors: Fengchao Chen, Tingmin Wu, Van Nguyen, Shuo Wang, Hongsheng Hu, Alsharif Abuadbba, Carsten Rudolph,
- Abstract要約: フィッシングはいまだに広範囲にわたるサイバー脅威であり、攻撃者は詐欺メールを使って被害者を誘惑し、機密情報を暴露している。
人工知能(AI)はフィッシング攻撃に対する防御において重要な要素となっているが、これらのアプローチは重大な制限に直面している。
本稿では,大規模言語モデル (LLM) と対向学習機構を活用するフレームワークであるPhishing Evolution Network (PEN) を提案し,高品質で現実的なフィッシングサンプルを連続的に生成する。
- 参考スコア(独自算出の注目度): 10.58220151364159
- License:
- Abstract: Phishing remains a pervasive cyber threat, as attackers craft deceptive emails to lure victims into revealing sensitive information. While Artificial Intelligence (AI), particularly deep learning, has become a key component in defending against phishing attacks, these approaches face critical limitations. The scarcity of publicly available, diverse, and updated data, largely due to privacy concerns, constrains their effectiveness. As phishing tactics evolve rapidly, models trained on limited, outdated data struggle to detect new, sophisticated deception strategies, leaving systems vulnerable to an ever-growing array of attacks. Addressing this gap is essential to strengthening defenses in an increasingly hostile cyber landscape. To address this gap, we propose the Phishing Evolution Network (PEN), a framework leveraging large language models (LLMs) and adversarial training mechanisms to continuously generate high quality and realistic diverse phishing samples, and analyze features of LLM-provided phishing to understand evolving phishing patterns. We evaluate the quality and diversity of phishing samples generated by PEN and find that it produces over 80% realistic phishing samples, effectively expanding phishing datasets across seven dominant types. These PEN-generated samples enhance the performance of current phishing detectors, leading to a 40% improvement in detection accuracy. Additionally, the use of PEN significantly boosts model robustness, reducing detectors' sensitivity to perturbations by up to 60%, thereby decreasing attack success rates under adversarial conditions. When we analyze the phishing patterns that are used in LLM-generated phishing, the cognitive complexity and the tone of time limitation are detected with statistically significant differences compared with existing phishing.
- Abstract(参考訳): フィッシングはいまだに広範囲にわたるサイバー脅威であり、攻撃者は詐欺メールを使って被害者を誘惑し、機密情報を暴露している。
人工知能(AI)、特にディープラーニングはフィッシング攻撃の防御において重要な要素となっているが、これらのアプローチは重要な制限に直面している。
公開データ、多様データ、更新データの不足は、主にプライバシー上の懸念から、その有効性を制限している。
フィッシングの戦術が急速に進化するにつれて、制限された時代遅れのデータで訓練されたモデルは、新たな高度な偽装戦略の検出に苦慮し、システムは成長を続ける一連の攻撃に脆弱になる。
このギャップに対処することは、ますます敵対的なサイバー環境における防御を強化するために不可欠である。
このギャップに対処するため,大規模言語モデル(LLM)と敵対的学習機構を活用するフレームワークであるPhishing Evolution Network (PEN) を提案し,高品質で現実的なフィッシングサンプルを連続的に生成し,LLMが提供するフィッシングの特徴を分析し,フィッシングパターンの進化を理解する。
我々は,PENが生成するフィッシング試料の品質と多様性を評価し,80%以上の現実的なフィッシング試料を生成し,フィッシングデータセットを7つの支配的なタイプに効果的に拡張することを発見した。
これらのPEN生成試料は、現在のフィッシング検出器の性能を高め、検出精度が40%向上した。
さらに、PENの使用はモデルロバスト性を大幅に向上させ、検出器の摂動に対する感度を最大60%低下させ、敵の条件下での攻撃成功率を低下させる。
LLM生成フィッシングで使用されるフィッシングパターンを分析すると、既存のフィッシングと比較して統計的に有意な差で認知的複雑性と時間制限のトーンを検出する。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
本稿では,1次元畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2024-04-27T17:13:49Z) - Deep Learning-Based Speech and Vision Synthesis to Improve Phishing
Attack Detection through a Multi-layer Adaptive Framework [1.3353802999735709]
現在のアンチフィッシング法は、攻撃者が採用する高度化戦略のために、複雑なフィッシングに対して脆弱なままである。
本研究では,Deep LearningとRandon Forestを組み合わせて,画像の読み上げ,ディープフェイクビデオからの音声合成,自然言語処理を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-27T06:47:52Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
本稿では,フィッシングサイトを検出するための2相スタック一般化モデルであるAntiPhishStackを提案する。
このモデルは、URLと文字レベルのTF-IDF特徴の学習を対称的に活用し、新たなフィッシング脅威に対処する能力を高める。
良性およびフィッシングまたは悪意のあるURLを含む2つのベンチマークデータセットに対する実験的検証は、既存の研究と比較して96.04%の精度で、このモデルの例外的な性能を示している。
論文 参考訳(メタデータ) (2024-01-17T03:44:27Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - SoK: Human-Centered Phishing Susceptibility [4.794822439017277]
フィッシングの検出と防止に人間がどう関わっているかを説明する3段階のフィッシング・サセプティビリティ・モデル(PSM)を提案する。
このモデルは、ユーザの検出性能を改善するために対処する必要があるいくつかの研究ギャップを明らかにする。
論文 参考訳(メタデータ) (2022-02-16T07:26:53Z) - Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification [65.33308059737506]
フェデレートラーニング(FL)は、プライバシーと効率性の約束により急速に人気が高まっている。
これまでの作業では、勾配更新からユーザデータを復元することで、FLパイプラインのプライバシの脆弱性が露呈されていた。
我々は、任意のサイズのバッチで運用するために、既存の攻撃を劇的に高める新しい戦略を導入する。
論文 参考訳(メタデータ) (2022-02-01T17:26:11Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。