論文の概要: SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images
- arxiv url: http://arxiv.org/abs/2404.17967v2
- Date: Wed, 22 May 2024 05:38:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:20:55.838471
- Title: SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images
- Title(参考訳): SCorP: 統計インフォームド・デンス対応予測
- Authors: Krithika Iyer, Jadie Adams, Shireen Y. Elhabian,
- Abstract要約: SCorPは,非分割画像から直接表面上の対応を予測できる新しいフレームワークである。
提案モデルでは,対応予測タスクの監督を取り除き,トレーニングフェーズと推論フェーズを合理化する。
- 参考スコア(独自算出の注目度): 5.507868474642766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption.
- Abstract(参考訳): 統計形状モデリング(SSM)は、解剖学的構造の幾何学的変動を定量化し分析するための強力な計算フレームワークであり、医学研究、診断、治療計画の進歩を促進する。
画像データから形状モデリングを行う従来の手法は、重要なマニュアルや計算資源を必要とする。
さらに、これらの手法は、新しいデータに対して形状記述子(例えば、表面上の点対応)を導出するために、モデリングパイプライン全体を繰り返す必要がある。
ディープラーニングのアプローチは、新しいデータに基づくSSMの構築の合理化を約束する一方で、深層ネットワークのトレーニングを監督する従来の技術に依存している。
さらに、従来のアプローチの線形性仮定は有効性を制限し、最適化/確立された対応を用いて訓練されたディープラーニングモデルにも制限が受け継がれている。
その結果、複雑な解剖の表現が困難になる。
これらの制約に対処するため,SCorPは,非分割画像から直接表面上の対応を予測できる新しいフレームワークである。
表面メッシュから直接学習した形状を教師なしで活用することにより、トレーニングの監督のために最適化された形状モデルの必要性を解消する。
前の強い形状は教師として機能し、学生ネットワークの特徴学習を規則化し、表面の対応を予測できる画像に基づく特徴の学習に役立てる。
線形性仮定を緩和しつつ、対応予測タスクの監督を取り除き、トレーニングと推論フェーズを合理化する。
関連論文リスト
- Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images [4.424170214926035]
対応型統計形状モデリング(SSM)は、人口レベルの形態計測を容易にする。
ディープラーニングの最近の進歩は、推論においてこのプロセスを合理化している。
我々は,ポイントクラウドを用いた画像からSSMを予測するために,弱い教師付きディープラーニングアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-15T20:47:59Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
本稿では,データ依存型ノイズ生成やテクスチャ拡張を利用して,画像間SSMフレームワークのオンザフライデータ拡張のための新しい戦略を提案する。
提案手法は,画素値のみに頼らず,基礎となる幾何学に焦点をあてることにより,精度の向上を実現する。
論文 参考訳(メタデータ) (2023-07-06T20:21:12Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
我々は、教師なしの置換不変表現学習を利用して、テンプレートポイントクラウドを主題固有のメッシュに変形する方法を推定する新しいアプローチであるMesh2SSMを提案する。
Mesh2SSMは集団固有のテンプレートも学習でき、テンプレート選択によるバイアスを低減できる。
論文 参考訳(メタデータ) (2023-05-13T00:03:59Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - From Images to Probabilistic Anatomical Shapes: A Deep Variational
Bottleneck Approach [0.0]
3次元医用画像から直接の統計的形状モデリング(SSM)は、病理の検出、疾患の診断、人口レベルの形態解析を行うための未利用のツールである。
本稿では,これらの仮定を緩和するために,変分情報ボトルネック理論に基づく基本的枠組みを提案する。
実験により,提案手法により精度が向上し,校正精度が向上することを確認した。
論文 参考訳(メタデータ) (2022-05-13T19:39:08Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models [4.608133071225539]
統計的形状モデリング(SSM)は、医学画像から生成される形状の個体群における解剖学的変異を特徴付ける。
DeepSSMは、ディープラーニングベースのイメージ・トゥ・シェイプモデルのための青写真を提供することを目指している。
論文 参考訳(メタデータ) (2021-10-14T04:52:37Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。