論文の概要: Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images
- arxiv url: http://arxiv.org/abs/2405.09697v1
- Date: Wed, 15 May 2024 20:47:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:50:04.621607
- Title: Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images
- Title(参考訳): 医用画像からの弱教師付ベイズ形状モデリング
- Authors: Jadie Adams, Krithika Iyer, Shireen Elhabian,
- Abstract要約: 対応型統計形状モデリング(SSM)は、人口レベルの形態計測を容易にする。
ディープラーニングの最近の進歩は、推論においてこのプロセスを合理化している。
我々は,ポイントクラウドを用いた画像からSSMを予測するために,弱い教師付きディープラーニングアプローチを導入する。
- 参考スコア(独自算出の注目度): 4.424170214926035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anatomical shape analysis plays a pivotal role in clinical research and hypothesis testing, where the relationship between form and function is paramount. Correspondence-based statistical shape modeling (SSM) facilitates population-level morphometrics but requires a cumbersome, potentially bias-inducing construction pipeline. Recent advancements in deep learning have streamlined this process in inference by providing SSM prediction directly from unsegmented medical images. However, the proposed approaches are fully supervised and require utilizing a traditional SSM construction pipeline to create training data, thus inheriting the associated burdens and limitations. To address these challenges, we introduce a weakly supervised deep learning approach to predict SSM from images using point cloud supervision. Specifically, we propose reducing the supervision associated with the state-of-the-art fully Bayesian variational information bottleneck DeepSSM (BVIB-DeepSSM) model. BVIB-DeepSSM is an effective, principled framework for predicting probabilistic anatomical shapes from images with quantification of both aleatoric and epistemic uncertainties. Whereas the original BVIB-DeepSSM method requires strong supervision in the form of ground truth correspondence points, the proposed approach utilizes weak supervision via point cloud surface representations, which are more readily obtainable. Furthermore, the proposed approach learns correspondence in a completely data-driven manner without prior assumptions about the expected variability in shape cohort. Our experiments demonstrate that this approach yields similar accuracy and uncertainty estimation to the fully supervised scenario while substantially enhancing the feasibility of model training for SSM construction.
- Abstract(参考訳): 解剖学的形状解析は、形態と機能の関係が最重要である臨床研究と仮説テストにおいて重要な役割を担っている。
対応型統計形状モデリング(SSM)は、人口レベルの形態計測を容易にするが、厄介でバイアスを引き起こす可能性のある建設パイプラインを必要とする。
近年の深層学習の進歩は、未解決の医用画像から直接SSM予測を提供することによって、推論におけるこのプロセスの合理化を図っている。
しかし、提案手法は完全な教師付きであり、従来のSSM構築パイプラインを使用してトレーニングデータを作成する必要があるため、関連する負担と制限を継承する。
これらの課題に対処するために、ポイントクラウド監視を用いた画像からSSMを予測するための弱い教師付きディープラーニングアプローチを導入する。
具体的には,BVIB-DeepSSM(DeepSSM)モデルを用いて,最新のベイズ変量情報ボトルネックに関する監督の削減を提案する。
BVIB-DeepSSMは、動脈とてんかんの両不確かさを定量化した画像から確率的解剖学的形状を予測するための、効果的で原則化されたフレームワークである。
提案手法では,BVIB-DeepSSM法は地上の真理対応点の形での強い監督を必要とするが,提案手法は,より容易に得ることのできる点雲面表現による弱い監督を利用する。
さらに, 提案手法は, 形状コホートにおける予測変動性を前提とせずに, 完全にデータ駆動方式で対応を学習する。
提案手法は,SSM構築のためのモデルトレーニングの実現可能性を大幅に向上させつつ,完全教師付きシナリオに類似した精度と不確かさを推定できることを実証した。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images [1.2179682412409507]
スパース画像データから3次元対応を予測する統一モデルであるSPI-CorrNetを提案する。
LGE MRI左房データセットとAbdomen CT-1K肝データセットを用いた実験により,スパース画像駆動SSMの精度とロバスト性の向上が示された。
論文 参考訳(メタデータ) (2024-07-02T03:56:20Z) - SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images [5.507868474642766]
SCorPは,非分割画像から直接表面上の対応を予測できる新しいフレームワークである。
提案モデルでは,対応予測タスクの監督を取り除き,トレーニングフェーズと推論フェーズを合理化する。
論文 参考訳(メタデータ) (2024-04-27T17:56:58Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Fully Bayesian VIB-DeepSSM [0.0]
統計的形状モデリング(SSM)は解剖学的形状の定量的解析を可能にし、臨床診断を行う。
DeepSSMは、アレタリック不確実性定量化画像から解剖学の確率的形状を予測するための、効果的で原則化されたフレームワークである。
完全ベイズVIBの定式化を導出し、2つのスケーラブルな実装手法の有効性を実証する。
合成形状と左房データの実験により、完全ベイズVIBネットワークは精度を犠牲にすることなく不確実性推論を改善した画像からSSMを予測することを示した。
論文 参考訳(メタデータ) (2023-05-09T23:01:05Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - From Images to Probabilistic Anatomical Shapes: A Deep Variational
Bottleneck Approach [0.0]
3次元医用画像から直接の統計的形状モデリング(SSM)は、病理の検出、疾患の診断、人口レベルの形態解析を行うための未利用のツールである。
本稿では,これらの仮定を緩和するために,変分情報ボトルネック理論に基づく基本的枠組みを提案する。
実験により,提案手法により精度が向上し,校正精度が向上することを確認した。
論文 参考訳(メタデータ) (2022-05-13T19:39:08Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Uncertain-DeepSSM: From Images to Probabilistic Shape Models [0.0]
DeepSSMは、非セグメント画像から直接統計的形状表現を抽出するエンドツーエンドのディープラーニングアプローチである。
DeepSSMは、視覚的に正確には仮定できないような、不確実な形状の推定を生成する。
本研究では,ネットワークを適応させて固有入力分散を予測することにより,データ依存型アレータティック不確実性の両方を定量化する統一モデルとして,Uncertain-DeepSSMを提案する。
論文 参考訳(メタデータ) (2020-07-13T17:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。