論文の概要: Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy
- arxiv url: http://arxiv.org/abs/2305.07805v2
- Date: Sun, 30 Jul 2023 06:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 22:45:27.279699
- Title: Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy
- Title(参考訳): Mesh2SSM: 表面メッシュから解剖の統計的形状モデルへ
- Authors: Krithika Iyer, Shireen Elhabian
- Abstract要約: 我々は、教師なしの置換不変表現学習を利用して、テンプレートポイントクラウドを主題固有のメッシュに変形する方法を推定する新しいアプローチであるMesh2SSMを提案する。
Mesh2SSMは集団固有のテンプレートも学習でき、テンプレート選択によるバイアスを低減できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical shape modeling is the computational process of discovering
significant shape parameters from segmented anatomies captured by medical
images (such as MRI and CT scans), which can fully describe subject-specific
anatomy in the context of a population. The presence of substantial non-linear
variability in human anatomy often makes the traditional shape modeling process
challenging. Deep learning techniques can learn complex non-linear
representations of shapes and generate statistical shape models that are more
faithful to the underlying population-level variability. However, existing deep
learning models still have limitations and require established/optimized shape
models for training. We propose Mesh2SSM, a new approach that leverages
unsupervised, permutation-invariant representation learning to estimate how to
deform a template point cloud to subject-specific meshes, forming a
correspondence-based shape model. Mesh2SSM can also learn a population-specific
template, reducing any bias due to template selection. The proposed method
operates directly on meshes and is computationally efficient, making it an
attractive alternative to traditional and deep learning-based SSM approaches.
- Abstract(参考訳): 統計的形状モデリングは、医療画像(MRIやCTスキャンなど)で捉えたセグメント化された解剖学から重要な形状パラメータを発見する計算過程である。
人間の解剖学における実質的な非線形変動の存在は、しばしば伝統的な形状モデリングプロセスを困難にしている。
深層学習技術は、形状の複雑な非線形表現を学習し、基礎となる人口レベルの変動に忠実な統計的形状モデルを生成することができる。
しかし、既存のディープラーニングモデルは依然として制限があり、トレーニングのために確立/最適化された形状モデルが必要である。
我々は、教師なしの置換不変表現学習を活用して、テンプレートポイントクラウドを主観的なメッシュに変形する方法を推定し、対応性に基づく形状モデルを作成する新しいアプローチであるMesh2SSMを提案する。
Mesh2SSMは集団固有のテンプレートも学習でき、テンプレート選択によるバイアスを低減できる。
提案手法はメッシュ上で直接動作し,計算効率が高いため,従来型および深層学習に基づくSSMアプローチの代替となる。
関連論文リスト
- SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images [5.507868474642766]
SCorPは,非分割画像から直接表面上の対応を予測できる新しいフレームワークである。
提案モデルでは,対応予測タスクの監督を取り除き,トレーニングフェーズと推論フェーズを合理化する。
論文 参考訳(メタデータ) (2024-04-27T17:56:58Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
本稿では,データ依存型ノイズ生成やテクスチャ拡張を利用して,画像間SSMフレームワークのオンザフライデータ拡張のための新しい戦略を提案する。
提案手法は,画素値のみに頼らず,基礎となる幾何学に焦点をあてることにより,精度の向上を実現する。
論文 参考訳(メタデータ) (2023-07-06T20:21:12Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
本稿では,トレーニングインスタンス間の密接な対応を必要とせず,形状変化を学習する新しい形状モデリング手法であるFlowSSMを提案する。
当モデルでは, 遠位端大腿骨・肝臓に先立って, 表現的かつ頑健な形状を提供することで, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-14T18:17:19Z) - Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven
Approach [0.0]
粒子ベース形状モデリング(PSM)は、個体群レベルの形状変化を捉えたデータ駆動型手法である。
本稿では,PSM法にインスパイアされたデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2022-09-06T18:00:45Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z) - tFold-TR: Combining Deep Learning Enhanced Hybrid Potential Energy for
Template-Based Modelling Structure Refinement [53.98034511648985]
現在のテンプレートベースのモデリングアプローチは2つの重要な問題に苦しんでいる。
テンプレートの異なる領域からの距離対の精度は様々であり、この情報はモデリングにはあまり導入されていない。
2つのニューラルネットワークモデルは、欠落した領域の距離情報と、テンプレートモデリング構造における異なる領域の距離ペアの精度を予測する。
論文 参考訳(メタデータ) (2021-05-10T13:32:12Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
我々は、広く使われている最先端のSSMツールの結果を体系的に評価する。
解剖学的ランドマーク/計測推測および病変スクリーニングのための検証フレームワークを提案する。
ShapeWorks と Deformetrica の形状モデルは臨床的に関連する集団レベルの変動を捉えている。
論文 参考訳(メタデータ) (2020-09-07T03:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。