Can Perplexity Predict Fine-Tuning Performance? An Investigation of Tokenization Effects on Sequential Language Models for Nepali
- URL: http://arxiv.org/abs/2404.18071v1
- Date: Sun, 28 Apr 2024 05:26:12 GMT
- Title: Can Perplexity Predict Fine-Tuning Performance? An Investigation of Tokenization Effects on Sequential Language Models for Nepali
- Authors: Nishant Luitel, Nirajan Bekoju, Anand Kumar Sah, Subarna Shakya,
- Abstract summary: The study of how subwording affects the understanding capacity of language models has been very few and only limited to a handful of languages.
We used 6 different tokenization schemes to pretrain relatively small language models in Nepali and used the representations learned to finetune on several downstream tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent language models use subwording mechanisms to handle Out-of-Vocabulary(OOV) words seen during test time and, their generation capacity is generally measured using perplexity, an intrinsic metric. It is known that increasing the subword granularity results in a decrease of perplexity value. However, the study of how subwording affects the understanding capacity of language models has been very few and only limited to a handful of languages. To reduce this gap we used 6 different tokenization schemes to pretrain relatively small language models in Nepali and used the representations learned to finetune on several downstream tasks. Although byte-level BPE algorithm has been used in recent models like GPT, RoBERTa we show that on average they are sub-optimal in comparison to algorithms such as SentencePiece in finetuning performances for Nepali. Additionally, similar recent studies have focused on the Bert-based language model. We, however, pretrain and finetune sequential transformer-based language models.
Related papers
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - MANTa: Efficient Gradient-Based Tokenization for Robust End-to-End
Language Modeling [0.0]
We propose MANTa, a Module for Adaptive Neural TokenizAtion.
ManTa is a differentiable tokenizer trained end-to-end with the language model.
We show that MANTa performs comparably to other models on the general-domain GLUE benchmark.
arXiv Detail & Related papers (2022-12-14T15:33:44Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
We show that subword-based models might still be the most practical choice in many settings.
We encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
arXiv Detail & Related papers (2022-10-13T15:47:09Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Quark: Controllable Text Generation with Reinforced Unlearning [68.07749519374089]
Large-scale language models often learn behaviors that are misaligned with user expectations.
We introduce Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted property.
For unlearning toxicity, negative sentiment, and repetition, our experiments show that Quark outperforms both strong baselines and state-of-the-art reinforcement learning methods.
arXiv Detail & Related papers (2022-05-26T21:11:51Z) - Impact of Tokenization on Language Models: An Analysis for Turkish [2.4660652494309936]
We train tokenizers and pretrain medium-sized language models using RoBERTa pretraining procedure on the Turkish split of the OSCAR corpus.
Our experiments, supported by statistical tests, reveal that Morphological-level tokenizer has challenging performance with de facto tokenizers.
We find that increasing the vocabulary size improves the performance of Morphological and Word-level tokenizers more than that of de facto tokenizers.
arXiv Detail & Related papers (2022-04-19T12:01:46Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Revisiting Simple Neural Probabilistic Language Models [27.957834093475686]
This paper revisits the neural probabilistic language model (NPLM) ofcitetBengio2003ANP.
When scaled up to modern hardware, this model performs much better than expected on word-level language model benchmarks.
Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM's local concatenation layer.
arXiv Detail & Related papers (2021-04-08T02:18:47Z) - Are Some Words Worth More than Others? [3.5598388686985354]
We propose two new intrinsic evaluation measures within the framework of a simple word prediction task.
We evaluate several commonly-used large English language models using our proposed metrics.
arXiv Detail & Related papers (2020-10-12T23:12:11Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
Language models must capture statistical dependencies between words at timescales ranging from very short to very long.
We derived a theory for how the memory gating mechanism in long short-term memory language models can capture power law decay.
Experiments showed that LSTM language models trained on natural English text learn to approximate this theoretical distribution.
arXiv Detail & Related papers (2020-09-27T02:13:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.