論文の概要: Generative AI for Low-Carbon Artificial Intelligence of Things
- arxiv url: http://arxiv.org/abs/2404.18077v1
- Date: Sun, 28 Apr 2024 05:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:02:54.134651
- Title: Generative AI for Low-Carbon Artificial Intelligence of Things
- Title(参考訳): 物の低炭素人工知能のための生成AI
- Authors: Jinbo Wen, Ruichen Zhang, Dusit Niyato, Jiawen Kang, Hongyang Du, Yang Zhang, Zhu Han,
- Abstract要約: ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
- 参考スコア(独自算出の注目度): 67.0243099823109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By integrating Artificial Intelligence (AI) with the Internet of Things (IoT), Artificial Intelligence of Things (AIoT) has revolutionized many fields. However, AIoT is facing the challenges of energy consumption and carbon emissions due to the continuous advancement of mobile technology. Fortunately, Generative AI (GAI) holds immense potential to reduce carbon emissions of AIoT due to its excellent reasoning and generation capabilities. In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT. Specifically, we first study the main impacts that cause carbon emissions in AIoT, and then introduce GAI techniques and their relations to carbon emissions. We then explore the application prospects of GAI in low-carbon AIoT, focusing on how GAI can reduce carbon emissions of network components. Subsequently, we propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules to generate more accurate and reliable optimization problems. Furthermore, we utilize Generative Diffusion Models (GDMs) to identify optimal strategies for carbon emission reduction. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we insightfully provide open research directions for low-carbon AIoT.
- Abstract(参考訳): 人工知能(AI)とIoT(Internet of Things)を統合することで、AIoT(Artificial Intelligence of Things)は多くの分野に革命をもたらした。
しかしAIoTは、モバイル技術の継続的な進歩により、エネルギー消費と二酸化炭素排出量の課題に直面している。
幸いなことに、Generative AI(GAI)は、その優れた推論と生成能力のために、AIoTの二酸化炭素排出量を減らす大きな可能性を秘めている。
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
具体的には、まず、AIoTにおける炭素排出量の原因となる主な影響について研究し、次に、GAI技術とその炭素排出量との関係について紹介する。
次に、低炭素AIoTにおけるGAIの適用可能性について検討し、GAIがネットワークコンポーネントの二酸化炭素排出量を減らす方法に焦点を当てる。
次に,Large Language Model (LLM) 対応の炭素排出最適化フレームワークを提案し,より正確で信頼性の高い最適化問題を生成するために,プラグブルLLMとRetrieval Augmented Generation (RAG)モジュールを設計する。
さらに, 生成拡散モデル(GDM)を用いて, 二酸化炭素排出削減のための最適戦略を同定する。
シミュレーションの結果,提案手法の有効性が示された。
最後に、低炭素AIoTのオープンな研究指針について考察する。
関連論文リスト
- Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
炭素市場(英: carbon market)は、個人の利益をグローバルユーティリティーと整合させる経済エージェントをインセンティブとする、市場ベースのツールである。
階層型モデルフリーマルチエージェント強化学習(MARL)を用いて市場をシミュレートする適応機構設計フレームワークを提案する。
MARLは、政府エージェントが生産性、平等、二酸化炭素排出のバランスをとることができることを示している。
論文 参考訳(メタデータ) (2024-06-12T05:08:51Z) - OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models [16.93272879722972]
OpenCarbonEvalは、二酸化炭素排出量を予測するために様々なモードで大規模なモデルを統合するためのフレームワークである。
視覚モデルと言語モデルの両方において,OpenCarbonEvalは,二酸化炭素排出量の予測性能に優れることを示す。
論文 参考訳(メタデータ) (2024-05-21T14:50:20Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
特に炭素フットプリントが高い大言語モデルのCO2排出量について検討した。
我々は, 二酸化炭素排出削減対策を提案することによって, 責任と持続性を有するLLMの育成を議論する。
論文 参考訳(メタデータ) (2024-04-01T15:01:45Z) - Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference [8.567865555551911]
本稿では,ジェネレーティブ・Large Language Model (LLM) 推論サービスの炭素フットプリント削減を目的とした,革新的なフレームワークであるSproutを提案する。
提案手法は,生態系の持続可能性と高品質な生成結果の需要のバランスをとる。
Llama2およびグローバル電力グリッドデータを用いた実世界の評価において, 炭素排出量を40%以上削減できることを実証した。
論文 参考訳(メタデータ) (2024-03-19T16:53:53Z) - Towards Net-Zero Carbon Emissions in Network AI for 6G and Beyond [36.02419793345877]
世界の温室効果ガス(温室効果ガス)排出量(主に炭素排出量)を2030年までに半分減らし、2050年までにネットゼロに達するよう、世界的な取り組みが進められている。
ハードウェアとソフトウェアの設計の両方でエネルギー効率が向上したにもかかわらず、モバイルネットワーク全体のエネルギー消費と炭素排出量は依然として増加を続けている。
DETAと呼ばれる新しい動的エネルギー取引とタスク割り当て最適化フレームワークが、炭素排出量の削減のために導入された。
論文 参考訳(メタデータ) (2023-09-18T12:24:06Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。