論文の概要: Snake with Shifted Window: Learning to Adapt Vessel Pattern for OCTA Segmentation
- arxiv url: http://arxiv.org/abs/2404.18096v1
- Date: Sun, 28 Apr 2024 07:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:53:05.967625
- Title: Snake with Shifted Window: Learning to Adapt Vessel Pattern for OCTA Segmentation
- Title(参考訳): Snake with Shifted Window: OCTAセグメンテーションのための血管パターンの適応学習
- Authors: Xinrun Chen, Mei Shen, Haojian Ning, Mengzhan Zhang, Chengliang Wang, Shiying Li,
- Abstract要約: 本研究では, 管状構造に適した変形可能な畳み込みと, 大域的特徴抽出のためのスウィン変換器を併用したSSW-OCTAモデルを提案する。
我々のモデルはOCTA-500データセットのテストと比較を行い、最先端のパフォーマンスを実現した。
- 参考スコア(独自算出の注目度): 2.314516220934268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmenting specific targets or structures in optical coherence tomography angiography (OCTA) images is fundamental for conducting further pathological studies. The retinal vascular layers are rich and intricate, and such vascular with complex shapes can be captured by the widely-studied OCTA images. In this paper, we thus study how to use OCTA images with projection vascular layers to segment retinal structures. To this end, we propose the SSW-OCTA model, which integrates the advantages of deformable convolutions suited for tubular structures and the swin-transformer for global feature extraction, adapting to the characteristics of OCTA modality images. Our model underwent testing and comparison on the OCTA-500 dataset, achieving state-of-the-art performance. The code is available at: https://github.com/ShellRedia/Snake-SWin-OCTA.
- Abstract(参考訳): 光コヒーレンス断層撮影血管造影(OCTA)画像中の特定の標的や構造を分離することは、さらなる病理研究に欠かせない。
網膜の血管層は豊富で複雑であり、複雑な形状の血管は広く研究されているOCTA画像によって捉えられる。
そこで本研究では,血管層を投影するOCTA画像を用いて網膜構造を分割する方法について検討する。
そこで本研究では,管状構造に適した変形可能な畳み込みと大域的特徴抽出のためのスウィン・トランスフォーマを併用したSSW-OCTAモデルを提案する。
我々のモデルはOCTA-500データセットのテストと比較を行い、最先端のパフォーマンスを実現した。
コードはhttps://github.com/ShellRedia/Snake-SWin-OCTAで公開されている。
関連論文リスト
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
本稿では,網膜血管分割のためのKLDDモデルを提案する。
我々のモデルは、変形可能な畳み込みの柔軟な受容場を利用して、分割を反復的に洗練する拡散過程を用いる。
実験は網膜基底画像データセット(DRIVE,CHASE_DB1)とOCTA-500データセットの3mm,6mmで評価された。
論文 参考訳(メタデータ) (2024-09-19T14:21:38Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
そこで我々は,OCTAMambaを提案する。OCTAMambaはOCTAMambaアーキテクチャをベースとした新しいU字型ネットワークで,OCTA内の血管を正確に分割する。
OCTAMambaは、局所的な特徴抽出のためのQuad Stream Efficient Mining Embedding Module、マルチスケールDilated Asymmetric Convolution ModuleをキャプチャするMulti-Scale Dilated Convolution Module、ノイズをフィルタリングしターゲット領域をハイライトするFocused Feature Recalibration Moduleを統合している。
本手法は,線形複雑度を維持しつつ,効率的なグローバルモデリングと局所特徴抽出を実現し,低計算医療応用に適している。
論文 参考訳(メタデータ) (2024-09-12T12:47:34Z) - Serp-Mamba: Advancing High-Resolution Retinal Vessel Segmentation with Selective State-Space Model [45.682311387979944]
本稿では,この課題に対処する最初のSerpentine Mamba(Serp-Mamba)ネットワークを提案する。
我々はまず,UWF-SLO画像をヘビのように曲がった血管構造に沿って走査するSerpentine Interwoven Adaptive (SIA)スキャン機構を考案した。
次に,高分解能画像によって強調されるカテゴリ不均衡問題に対処するアンビグニティ駆動型デュアルリカレーションモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:40:47Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ
Histopathology Image Synthesis [63.845552349914186]
本研究では,異なる臓器に対して,現実的な色分布とテクスチャを合成するためのスタイル誘導型インスタンス適応正規化(SIAN)を提案する。
4つのフェーズは一緒に動作し、生成ネットワークに統合され、イメージセマンティクス、スタイル、インスタンスレベルのバウンダリを埋め込む。
論文 参考訳(メタデータ) (2022-09-02T16:45:46Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
OCT-Aセグメンテーションデータセット(ROSE)は229枚のOCT-A画像からなり、中心線レベルまたは画素レベルで血管アノテーションを付加する。
次に,スプリットをベースとしたSCF-Net(Coarse-to-Fine vessel segmentation Network)を提案する。
SCF-Netでは、スプリットベース粗いセグメンテーション(SCS)モジュールを最初に導入し、スプリットベースリファインメント(SRN)モジュールを使用して形状・形状を最適化する。
論文 参考訳(メタデータ) (2020-07-10T06:54:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。