Permutation-equivariant quantum convolutional neural networks
- URL: http://arxiv.org/abs/2404.18198v1
- Date: Sun, 28 Apr 2024 14:34:28 GMT
- Title: Permutation-equivariant quantum convolutional neural networks
- Authors: Sreetama Das, Filippo Caruso,
- Abstract summary: We propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to $S_n$ and its subgroups.
For subgroups of $S_n$, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs.
- Score: 1.7034813545878589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Symmetric group $S_{n}$ manifests itself in large classes of quantum systems as the invariance of certain characteristics of a quantum state with respect to permuting the qubits. The subgroups of $S_{n}$ arise, among many other contexts, to describe label symmetry of classical images with respect to spatial transformations, e.g. reflection or rotation. Equipped with the formalism of geometric quantum machine learning, in this work we propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to $S_{n}$ and its subgroups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction of EQCNNs for small subgroups of $S_{n}$. Our novel EQCNN architecture corresponding to the full permutation group $S_{n}$ is built by applying all possible QCNNs with equal probability, which can also be conceptualized as a dropout strategy in quantum neural networks. For subgroups of $S_{n}$, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs. The $S_{n}$-equivariant QCNN architecture shows significantly improved training and test performance than non-equivariant QCNN for classification of connected and non-connected graphs. When trained with sufficiently large number of data, the $S_{n}$-equivariant QCNN shows better average performance compared to $S_{n}$-equivariant QNN . These results contribute towards building powerful quantum machine learning architectures in permutation-symmetric systems.
Related papers
- Projected Stochastic Gradient Descent with Quantum Annealed Binary Gradients [51.82488018573326]
We present QP-SBGD, a novel layer-wise optimiser tailored towards training neural networks with binary weights.
BNNs reduce the computational requirements and energy consumption of deep learning models with minimal loss in accuracy.
Our algorithm is implemented layer-wise, making it suitable to train larger networks on resource-limited quantum hardware.
arXiv Detail & Related papers (2023-10-23T17:32:38Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
This work proposes equivariant Quantum Convolutional Neural Networks (EquivQCNNs) for image classification under planar $p4m$ symmetry.
We present the results tested in different use cases, such as phase detection of the 2D Ising model and classification of the extended MNIST dataset.
arXiv Detail & Related papers (2023-10-03T18:01:02Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Theoretical Guarantees for Permutation-Equivariant Quantum Neural
Networks [0.0]
We show how to build equivariant quantum neural networks (QNNs)
We prove that they do not suffer from barren plateaus, quickly reach overparametrization, and generalize well from small amounts of data.
Our work provides the first theoretical guarantees for equivariant QNNs, thus indicating the extreme power and potential of GQML.
arXiv Detail & Related papers (2022-10-18T16:35:44Z) - Theory for Equivariant Quantum Neural Networks [0.0]
We present a theoretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant symmetry group.
Our framework can be readily applied to virtually all areas of quantum machine learning.
arXiv Detail & Related papers (2022-10-16T15:42:21Z) - A heterogeneous group CNN for image super-resolution [127.2132400582117]
Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures.
We present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image.
arXiv Detail & Related papers (2022-09-26T04:14:59Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network on NISQ Devices [0.9831489366502298]
We propose a quantum convolutional neural network inspired by convolutional neural networks.
Our model is robust to certain noise for image recognition tasks.
It opens up the prospect of exploiting quantum power to process information in the era of big data.
arXiv Detail & Related papers (2021-04-14T15:07:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.