Pioneering Precision in Lumbar Spine MRI Segmentation with Advanced Deep Learning and Data Enhancement
- URL: http://arxiv.org/abs/2409.06018v1
- Date: Mon, 9 Sep 2024 19:22:17 GMT
- Title: Pioneering Precision in Lumbar Spine MRI Segmentation with Advanced Deep Learning and Data Enhancement
- Authors: Istiak Ahmed, Md. Tanzim Hossain, Md. Zahirul Islam Nahid, Kazi Shahriar Sanjid, Md. Shakib Shahariar Junayed, M. Monir Uddin, Mohammad Monirujjaman Khan,
- Abstract summary: This study focuses on addressing key challenges such as class imbalance and data preprocessing.
MRI scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs)
The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents an advanced approach to lumbar spine segmentation using deep learning techniques, focusing on addressing key challenges such as class imbalance and data preprocessing. Magnetic resonance imaging (MRI) scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs). By rectifying class inconsistencies in the data preprocessing stage, the fidelity of the training data is ensured. The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer, to mitigate common issues such as the dying ReLU problem and improve stability during training. Introducing a custom combined loss function effectively tackles class imbalance, significantly improving segmentation accuracy. Evaluation using a comprehensive suite of metrics showcases the superior performance of this approach, outperforming existing methods and advancing the current techniques in lumbar spine segmentation. These findings hold significant advancements for enhanced lumbar spine MRI and segmentation diagnostic accuracy.
Related papers
- Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering [6.196283036344105]
Osteoporosis is a common condition that increases fracture risk, especially in older adults.
This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability.
arXiv Detail & Related papers (2024-11-01T13:58:15Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet [2.8730926763860687]
We propose a modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine.
Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic.
arXiv Detail & Related papers (2024-04-28T19:35:00Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan.
Existing deep learning based methods only focus on the basic cases of skill sequences.
We propose a novel approach to sensorless freehand 3D US reconstruction considering the complex skill sequences.
arXiv Detail & Related papers (2021-07-31T16:06:50Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.