論文の概要: DRAM-Profiler: An Experimental DRAM RowHammer Vulnerability Profiling Mechanism
- arxiv url: http://arxiv.org/abs/2404.18396v1
- Date: Mon, 29 Apr 2024 03:15:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:56:28.760018
- Title: DRAM-Profiler: An Experimental DRAM RowHammer Vulnerability Profiling Mechanism
- Title(参考訳): DRAMプロファイラ:実験的なDRAMローハマー脆弱性プロファイリング機構
- Authors: Ranyang Zhou, Jacqueline T. Liu, Nakul Kochar, Sabbir Ahmed, Adnan Siraj Rakin, Shaahin Angizi,
- Abstract要約: 本稿では,DRAM-Profilerと呼ばれる低オーバーヘッドDRAM RowHammer脆弱性プロファイリング手法を提案する。
提案した試験ベクトルは,攻撃前の攻撃者と被害者行の空間的相関を意図的に弱め,評価を行う。
その結果、RowHammer攻撃のタイプと量において、異なるメーカーのチップ間で大きなばらつきがあることが判明した。
- 参考スコア(独自算出の注目度): 8.973443004379561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RowHammer stands out as a prominent example, potentially the pioneering one, showcasing how a failure mechanism at the circuit level can give rise to a significant and pervasive security vulnerability within systems. Prior research has approached RowHammer attacks within a static threat model framework. Nonetheless, it warrants consideration within a more nuanced and dynamic model. This paper presents a low-overhead DRAM RowHammer vulnerability profiling technique termed DRAM-Profiler, which utilizes innovative test vectors for categorizing memory cells into distinct security levels. The proposed test vectors intentionally weaken the spatial correlation between the aggressors and victim rows before an attack for evaluation, thus aiding designers in mitigating RowHammer vulnerabilities in the mapping phase. While there has been no previous research showcasing the impact of such profiling to our knowledge, our study methodically assesses 128 commercial DDR4 DRAM products. The results uncover the significant variability among chips from different manufacturers in the type and quantity of RowHammer attacks that can be exploited by adversaries.
- Abstract(参考訳): RowHammer氏は、潜在的に先駆的な例として、回路レベルでの障害メカニズムがシステム内の重大な、そして広範囲にわたるセキュリティ脆弱性をいかに生み出すかを示している。
以前の調査では、静的脅威モデルフレームワーク内のRowHammer攻撃にアプローチしていた。
それでも、よりニュアンスでダイナミックなモデルにおける考慮を保証します。
本稿では、メモリセルを異なるセキュリティレベルに分類する革新的なテストベクトルを利用するDRAM-Profilerと呼ばれる低オーバーヘッドDRAM RowHammer脆弱性プロファイリング手法を提案する。
提案したテストベクターは,アタック前の攻撃者と被害者行の空間的相関を意図的に弱め,マッピングフェーズにおけるRowHammer脆弱性の軽減を支援する。
このようなプロファイリングが我々の知識に与える影響を実証する以前の研究はないが、本研究では、128の商用DDR4 DRAM製品について方法論的に評価する。
その結果、RowHammer攻撃のタイプと量において、異なるメーカーのチップ間で大きなばらつきがあることが判明した。
関連論文リスト
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
そこで本研究では, よりスムーズなホワイトボックス対逆攻撃を提案する。
我々のアプローチは、ジャコビアン行列の隠れた層の$(p,q)$-singularベクトルにスパーシティを提供するトラルキャットパワーに基づいている。
本研究は,攻撃をスパースする最先端モデルの脆弱性を実証し,堅牢な機械学習システムの開発の重要性を強調した。
論文 参考訳(メタデータ) (2024-01-25T09:21:29Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - Threshold Breaker: Can Counter-Based RowHammer Prevention Mechanisms Truly Safeguard DRAM? [8.973443004379561]
本稿では,Threshold Breakerと呼ばれる多面的障害注入攻撃手法を実験的に実証する。
ターゲットの行から遠い物理的距離で行をソフトアタックすることで、最も先進的なカウンターベース防御機構を効果的に回避することができる。
ケーススタディとして、現代のディープニューラルネットワーク(DNN)に対して対向重み攻撃を行うことにより、我々のメカニズムとよく知られた両面攻撃のパフォーマンス効率を比較する。
論文 参考訳(メタデータ) (2023-11-28T03:36:17Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
メモリフォールトインジェクション技術を利用したビットフリップ攻撃(BFA)と呼ばれる新たな重み修正攻撃が提案された。
本稿では,高リスクモデルを構築するための訓練段階に敵が関与する,訓練支援ビットフリップ攻撃を提案する。
論文 参考訳(メタデータ) (2023-08-12T09:34:43Z) - DNN-Defender: A Victim-Focused In-DRAM Defense Mechanism for Taming Adversarial Weight Attack on DNNs [10.201050807991175]
本稿では,DNN(Quantized Deep Neural Networks)に適したDRAMベースの犠牲者中心防御機構について紹介する。
DNN-Defenderは、ターゲットのRowHammer攻撃のパフォーマンスをランダムな攻撃レベルに低下させる高いレベルの保護を提供することができる。
提案されたディフェンスは、ソフトウェアトレーニングやハードウェアオーバーヘッドを発生させることなく、CIFAR-10とImageNetデータセットに精度の低下はない。
論文 参考訳(メタデータ) (2023-05-14T00:30:58Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Variation Enhanced Attacks Against RRAM-based Neuromorphic Computing
System [14.562718993542964]
本稿では,異なる攻撃シナリオと目的に対する2種類のハードウェア・アウェア・アタック手法を提案する。
1つ目は、ニューラルネットワークの予測を誤解させるために入力サンプルを摂動させる敵攻撃VADERである。
2つ目は、特定のサンプルがターゲットラベルに分類されるように、ネットワークパラメータ空間を乱す障害注入攻撃(EFI)である。
論文 参考訳(メタデータ) (2023-02-20T10:57:41Z) - Overparameterized Linear Regression under Adversarial Attacks [0.0]
敵攻撃時の線形回帰の誤差について検討した。
線形モデルに機能を追加することは、さらなる堅牢性や脆性の原因になる可能性がある。
論文 参考訳(メタデータ) (2022-04-13T09:50:41Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。