論文の概要: Threshold Breaker: Can Counter-Based RowHammer Prevention Mechanisms Truly Safeguard DRAM?
- arxiv url: http://arxiv.org/abs/2311.16460v1
- Date: Tue, 28 Nov 2023 03:36:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 13:44:50.333212
- Title: Threshold Breaker: Can Counter-Based RowHammer Prevention Mechanisms Truly Safeguard DRAM?
- Title(参考訳): Threshold Breaker: 対向型RowHammer防止メカニズムは本当に安全か?
- Authors: Ranyang Zhou, Jacqueline Liu, Sabbir Ahmed, Nakul Kochar, Adnan Siraj Rakin, Shaahin Angizi,
- Abstract要約: 本稿では,Threshold Breakerと呼ばれる多面的障害注入攻撃手法を実験的に実証する。
ターゲットの行から遠い物理的距離で行をソフトアタックすることで、最も先進的なカウンターベース防御機構を効果的に回避することができる。
ケーススタディとして、現代のディープニューラルネットワーク(DNN)に対して対向重み攻撃を行うことにより、我々のメカニズムとよく知られた両面攻撃のパフォーマンス効率を比較する。
- 参考スコア(独自算出の注目度): 8.973443004379561
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper challenges the existing victim-focused counter-based RowHammer detection mechanisms by experimentally demonstrating a novel multi-sided fault injection attack technique called Threshold Breaker. This mechanism can effectively bypass the most advanced counter-based defense mechanisms by soft-attacking the rows at a farther physical distance from the target rows. While no prior work has demonstrated the effect of such an attack, our work closes this gap by systematically testing 128 real commercial DDR4 DRAM products and reveals that the Threshold Breaker affects various chips from major DRAM manufacturers. As a case study, we compare the performance efficiency between our mechanism and a well-known double-sided attack by performing adversarial weight attacks on a modern Deep Neural Network (DNN). The results demonstrate that the Threshold Breaker can deliberately deplete the intelligence of the targeted DNN system while DRAM is fully protected.
- Abstract(参考訳): 本稿では,Threshold Breakerと呼ばれる新しい多面的障害注入攻撃手法を実験的に実証することにより,既存の被害者対応型RowHammer検出機構に挑戦する。
この機構は、ターゲット行から遠い物理的距離で行をソフトアタックすることにより、最も先進的なカウンターベース防御機構を効果的に回避することができる。
このような攻撃の効果を実証する以前の研究はないが、我々の研究は、128個の実際の商用DDR4 DRAM製品を体系的にテストすることでこのギャップを埋め、Threshold Breakerが主要DRAMメーカーの様々なチップに影響を与えることを明らかにした。
ケーススタディでは、現代のディープニューラルネットワーク(DNN)に対して対向重み攻撃を行うことにより、我々のメカニズムとよく知られた両面攻撃のパフォーマンス効率を比較した。
その結果、Threshold Breakerは、DRAMが完全に保護されている間、ターゲットとするDNNシステムのインテリジェンスを意図的に損なうことができることを示した。
関連論文リスト
- Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions [6.157443107603247]
RowHammerはDRAMの読み出し障害機構で、DRAMセルの行(DRAM行)に繰り返しアクセスすると、物理的に近くのDRAM行(victim row)でビットフリップが誘導される。
より新しいDRAMチップ世代では、これらのメカニズムはより積極的に予防リフレッシュを行い、より大きなパフォーマンス、エネルギ、または面積オーバーヘッドを引き起こす。
実DRAMチップにおけるリフレッシュレイテンシとRowHammer特性の相互作用に関する厳密な実験を行った。
以上の結果から, 攻撃性緩和のための部分電荷復元(PaCRAM)は, 5つの最先端RowHammer緩和機構によって引き起こされる性能とエネルギーオーバーヘッドを低減することが示唆された。
論文 参考訳(メタデータ) (2025-02-17T12:39:03Z) - DAPPER: A Performance-Attack-Resilient Tracker for RowHammer Defense [1.1816942730023883]
RowHammerの脆弱性は、現代のDRAMベースのシステムに重大な脅威をもたらす。
Perf-Attacksは共有構造を利用して、良質なアプリケーションのDRAM帯域幅を削減する。
我々は,共有構造のマッピングを捉えるために,敵対的試みを阻止するための安全なハッシュ機構を提案する。
論文 参考訳(メタデータ) (2025-01-31T02:38:53Z) - DRAM-Profiler: An Experimental DRAM RowHammer Vulnerability Profiling Mechanism [8.973443004379561]
本稿では,DRAM-Profilerと呼ばれる低オーバーヘッドDRAM RowHammer脆弱性プロファイリング手法を提案する。
提案した試験ベクトルは,攻撃前の攻撃者と被害者行の空間的相関を意図的に弱め,評価を行う。
その結果、RowHammer攻撃のタイプと量において、異なるメーカーのチップ間で大きなばらつきがあることが判明した。
論文 参考訳(メタデータ) (2024-04-29T03:15:59Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - DNN-Defender: A Victim-Focused In-DRAM Defense Mechanism for Taming Adversarial Weight Attack on DNNs [10.201050807991175]
本稿では,DNN(Quantized Deep Neural Networks)に適したDRAMベースの犠牲者中心防御機構について紹介する。
DNN-Defenderは、ターゲットのRowHammer攻撃のパフォーマンスをランダムな攻撃レベルに低下させる高いレベルの保護を提供することができる。
提案されたディフェンスは、ソフトウェアトレーニングやハードウェアオーバーヘッドを発生させることなく、CIFAR-10とImageNetデータセットに精度の低下はない。
論文 参考訳(メタデータ) (2023-05-14T00:30:58Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。