論文の概要: Learning a Sparse Neural Network using IHT
- arxiv url: http://arxiv.org/abs/2404.18414v1
- Date: Mon, 29 Apr 2024 04:10:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:46:41.764754
- Title: Learning a Sparse Neural Network using IHT
- Title(参考訳): IHTを用いたスパースニューラルネットワークの学習
- Authors: Saeed Damadi, Soroush Zolfaghari, Mahdi Rezaie, Jinglai Shen,
- Abstract要約: 本稿では、高度なスパース最適化の分野、特に非線形微分可能関数に対処する分野の成果に依拠する。
NNのトレーニングの計算能力が増大するにつれて、モデルがより多くのパラメータで複雑になる。
本稿では,ニューラルネットワーク(NN)トレーニングの領域において,そのような収束の理論的前提が適用可能であるかを検討することを目的とする。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core of a good model is in its ability to focus only on important information that reflects the basic patterns and consistencies, thus pulling out a clear, noise-free signal from the dataset. This necessitates using a simplified model defined by fewer parameters. The importance of theoretical foundations becomes clear in this context, as this paper relies on established results from the domain of advanced sparse optimization, particularly those addressing nonlinear differentiable functions. The need for such theoretical foundations is further highlighted by the trend that as computational power for training NNs increases, so does the complexity of the models in terms of a higher number of parameters. In practical scenarios, these large models are often simplified to more manageable versions with fewer parameters. Understanding why these simplified models with less number of parameters remain effective raises a crucial question. Understanding why these simplified models with fewer parameters remain effective raises an important question. This leads to the broader question of whether there is a theoretical framework that can clearly explain these empirical observations. Recent developments, such as establishing necessary conditions for the convergence of iterative hard thresholding (IHT) to a sparse local minimum (a sparse method analogous to gradient descent) are promising. The remarkable capacity of the IHT algorithm to accurately identify and learn the locations of nonzero parameters underscores its practical effectiveness and utility. This paper aims to investigate whether the theoretical prerequisites for such convergence are applicable in the realm of neural network (NN) training by providing justification for all the necessary conditions for convergence. Then, these conditions are validated by experiments on a single-layer NN, using the IRIS dataset as a testbed.
- Abstract(参考訳): 優れたモデルのコアとなるのは、基本的なパターンとコンピテンシーを反映した重要な情報のみに焦点を当て、データセットから明確なノイズのない信号を取り出す能力である。
これは、より少ないパラメータで定義された単純化されたモデルを使用する必要がある。
この文脈において理論基盤の重要性は明らかとなり、この論文は高度なスパース最適化の領域、特に非線形微分可能関数に対処する領域からの確立された結果に依存している。
このような理論基盤の必要性は、NNの訓練のための計算能力が増大するにつれて、より高いパラメータ数のモデルが複雑化する傾向によってさらに強調される。
現実的なシナリオでは、これらの大きなモデルは、より少ないパラメータを持つより管理しやすいバージョンに単純化されることが多い。
パラメータ数が少ないこれらの単純化されたモデルが有効である理由を理解することは、決定的な疑問を提起する。
パラメータの少ないこれらの単純化されたモデルが有効である理由を理解することは、重要な疑問を提起する。
このことは、これらの経験的観察を明確に説明できる理論的な枠組みが存在するかどうかというより広い疑問につながります。
繰り返し硬度閾値(IHT)の局所的最小値(勾配降下に類似したスパース法)への収束に必要な条件の確立など,近年の進展が期待できる。
非ゼロパラメータの位置を正確に識別し、学習するIHTアルゴリズムの顕著な能力は、その実用性と有用性を示している。
本稿では, ニューラルネットワーク(NN)トレーニングの領域において, 収束に必要な条件をすべて正当化することで, 収束の理論的前提が適用可能であるかを検討することを目的とする。
そして、これらの条件は、IRISデータセットをテストベッドとして、単層NNの実験によって検証される。
関連論文リスト
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Beyond the Universal Law of Robustness: Sharper Laws for Random Features
and Neural Tangent Kernels [14.186776881154127]
本稿では、ランダム特徴とニューラル・タンジェント・カーネル(NTK)の2つの設定における経験的リスク最小化に焦点を当てた。
ランダムな特徴に対して、モデルが任意のパラメータ化の度合いに対してロバストであることは、普遍的ロバスト性法則から生じる必要条件が満たされている場合でも証明する。
本研究の結果は, 合成および標準原型データセットの数値的証拠によって裏付けられている。
論文 参考訳(メタデータ) (2023-02-03T09:58:31Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
Overparameterized Machine Learning [37.01683478234978]
機械学習(ML)の急速な進歩は、この分野の長年のドグマに挑戦する科学的な疑問を数多く提起している。
最も重要なライドルの1つは、パラメータ化されたモデルの優れた経験的一般化である。
論文 参考訳(メタデータ) (2021-09-06T10:48:40Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
最近の実証的な証拠は、オーバライゼーションの実践が大きなモデルのトレーニングに利益をもたらすだけでなく、軽量モデルの構築を支援することも示している。
本稿では,モデル刈り込みの高次元ツールセットを理論的に特徴付けることにより,これらの経験的発見に光を当てる。
もっとも情報に富む特徴の位置が分かっていても、我々は大きなモデルに適合し、刈り取るのがよい体制を解析的に特定する。
論文 参考訳(メタデータ) (2020-12-16T05:13:30Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
逆スケール空間の差分包摂に基づく新しい手法を提案する。
DessiLBIが早期に「優勝チケット」を発表することを示す。
論文 参考訳(メタデータ) (2020-07-04T04:40:16Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z) - Learning CHARME models with neural networks [1.5362025549031046]
我々はCHARME(Conditional Heteroscedastic Autoregressive Mixture of Experts)と呼ばれるモデルを考える。
そこで本研究では,NNに基づく自己回帰関数の学習理論を開発した。
論文 参考訳(メタデータ) (2020-02-08T21:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。