論文の概要: Learning CHARME models with neural networks
- arxiv url: http://arxiv.org/abs/2002.03237v2
- Date: Tue, 17 Nov 2020 17:54:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 22:37:04.176877
- Title: Learning CHARME models with neural networks
- Title(参考訳): ニューラルネットワークによるチャームモデル学習
- Authors: Jos\'e G. G\'omez Garc\'ia, Jalal Fadili, Christophe Chesneau
- Abstract要約: 我々はCHARME(Conditional Heteroscedastic Autoregressive Mixture of Experts)と呼ばれるモデルを考える。
そこで本研究では,NNに基づく自己回帰関数の学習理論を開発した。
- 参考スコア(独自算出の注目度): 1.5362025549031046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider a model called CHARME (Conditional Heteroscedastic
Autoregressive Mixture of Experts), a class of generalized mixture of nonlinear
nonparametric AR-ARCH time series. Under certain Lipschitz-type conditions on
the autoregressive and volatility functions, we prove that this model is
stationary, ergodic and $\tau$-weakly dependent. These conditions are much
weaker than those presented in the literature that treats this model. Moreover,
this result forms the theoretical basis for deriving an asymptotic theory of
the underlying (non)parametric estimation, which we present for this model. As
an application, from the universal approximation property of neural networks
(NN), we develop a learning theory for the NN-based autoregressive functions of
the model, where the strong consistency and asymptotic normality of the
considered estimator of the NN weights and biases are guaranteed under weak
conditions.
- Abstract(参考訳): 本稿では、非線形非パラメトリックAR-ARCH時系列の一般化混合のクラスであるCHARME(Conditional Heteroscedastic Autoregressive Mixture of Experts)というモデルを検討する。
自己回帰およびボラティリティ関数上のある種のリプシッツ型条件の下では、このモデルが定常、エルゴード、および$\tau$-弱依存であることが証明される。
これらの条件は、このモデルを扱う文献で示されたものよりもはるかに弱い。
さらに、この結果は、基礎となる(非)パラメトリック推定の漸近理論を導出するための理論的基礎を形成し、このモデルに提示する。
ニューラルネットワーク(nn)の普遍近似性から,nn重みとバイアスの推算値の強い一貫性と漸近的正規性が弱条件下で保証されるモデルにおけるnnに基づく自己回帰関数の学習理論を考案する。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Algebraic and Statistical Properties of the Ordinary Least Squares Interpolator [3.4320157633663064]
我々は最小$ell$-norm OLS補間器について結果を提供する。
ガウス・マルコフの定理の拡張のような統計的結果を示す。
我々はOLS補間器の特性をさらに探求するシミュレーションを行う。
論文 参考訳(メタデータ) (2023-09-27T16:41:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions [30.018173329118184]
生存回帰のための強力なフレキシブルなニューラル・モデリング・フレームワークであるニューラル・フラリティ・マシン(NFM)を提案する。
2つの具体的なモデルは、ニューラル比例ハザードモデルと非ハザード回帰モデルを拡張する枠組みに基づいて導出される。
我々は,異なるスケールのベンチマークデータセットを6ドル以上で評価し,提案したNAMモデルは予測性能において最先端サバイバルモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-03-18T08:15:15Z) - The Asymmetric Maximum Margin Bias of Quasi-Homogeneous Neural Networks [26.58848653965855]
準均質モデルのクラスを導入し、同質な活性化を伴うほぼ全てのニューラルネットワークを記述するのに十分な表現性を示す。
すべてのパラメータが等しく扱われる同質なモデルの場合とは異なり、勾配流はパラメータのサブセットを暗黙的に好んでいる。
論文 参考訳(メタデータ) (2022-10-07T21:14:09Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
正規化フローは従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための経路を提供することを示す。
本稿では,この拡張された生成モデルの効率を最適化する戦略と応用例を示す。
論文 参考訳(メタデータ) (2022-01-21T19:00:18Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Equivariant online predictions of non-stationary time series [0.0]
モデル不特定条件下での統計的手法の理論的予測特性を解析する。
ランダムウォーク・ダイナミック・リニア・モデル(ランダムウォーク・ダイナミック・リニア・モデル)の特定のクラスが、正確なミニマックス予測密度を生成することを示す。
論文 参考訳(メタデータ) (2019-11-20T01:46:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。