論文の概要: Enabling Efficient and Flexible Interpretability of Data-driven Anomaly Detection in Industrial Processes with AcME-AD
- arxiv url: http://arxiv.org/abs/2404.18525v2
- Date: Fri, 25 Oct 2024 08:59:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:34:16.602616
- Title: Enabling Efficient and Flexible Interpretability of Data-driven Anomaly Detection in Industrial Processes with AcME-AD
- Title(参考訳): AcME-ADを用いた産業プロセスにおけるデータ駆動異常検出の効率的かつ柔軟な解釈性
- Authors: Valentina Zaccaria, Chiara Masiero, David Dandolo, Gian Antonio Susto,
- Abstract要約: 本稿では,AcME-ADの産業応用について述べる。
AcME-ADはモデルに依存しない柔軟性を提供し、リアルタイム効率を優先する。
これらのテストは、産業環境におけるADと特徴に基づく根本原因分析に有用なツールとして、AcME-ADの可能性を実証している。
- 参考スコア(独自算出の注目度): 5.315104943095396
- License:
- Abstract: While Machine Learning has become crucial for Industry 4.0, its opaque nature hinders trust and impedes the transformation of valuable insights into actionable decision, a challenge exacerbated in the evolving Industry 5.0 with its human-centric focus. This paper addresses this need by testing the applicability of AcME-AD in industrial settings. This recently developed framework facilitates fast and user-friendly explanations for anomaly detection. AcME-AD is model-agnostic, offering flexibility, and prioritizes real-time efficiency. Thus, it seems suitable for seamless integration with industrial Decision Support Systems. We present the first industrial application of AcME-AD, showcasing its effectiveness through experiments. These tests demonstrate AcME-AD's potential as a valuable tool for explainable AD and feature-based root cause analysis within industrial environments, paving the way for trustworthy and actionable insights in the age of Industry 5.0.
- Abstract(参考訳): 機械学習は産業4.0にとって重要になっているが、その不透明な性質は信頼を妨げ、価値ある洞察の行動可能な決定への転換を妨げる。
本稿では,産業環境におけるAcME-ADの適用性を検証することで,このニーズに対処する。
最近開発されたこのフレームワークは、異常検出のための高速でユーザフレンドリーな説明を容易にする。
AcME-ADはモデルに依存しない柔軟性を提供し、リアルタイム効率を優先する。
したがって,産業用意思決定支援システムとのシームレスな統合に適していると考えられる。
本稿では,AcME-ADの産業応用について述べる。
これらのテストは、産業環境におけるADと特徴に基づく根本原因分析のための有用なツールとしてのAcME-ADの可能性を示し、産業5.0の時代に信頼できる、行動可能な洞察を得るための道を開いた。
関連論文リスト
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Artificial Intelligence Approaches for Predictive Maintenance in the Steel Industry: A Survey [9.088208602104105]
予測保守(PdM)は産業4.0の柱の一つとして登場した。
この調査は、鉄鋼業界におけるAIベースのPdM分野における知識の現状を総合するものである。
論文 参考訳(メタデータ) (2024-05-21T13:32:46Z) - Interpretable Data-driven Anomaly Detection in Industrial Processes with ExIFFI [3.7516053899419104]
工業プロセスは、最終製品の生産を包含して、可能な限り業務を効率化することを目的としている。
産業5.0の出現を踏まえ、より望ましいアプローチは解釈可能な結果の提供である。
本稿では,ExIFFIの産業的応用として,EIF(Extended isolated Forest)異常検出のための高速かつ効率的な説明法の開発に焦点をあてた。
論文 参考訳(メタデータ) (2024-05-02T10:23:17Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - AcME-AD: Accelerated Model Explanations for Anomaly Detection [5.702288833888639]
AcME-ADは相互運用性のためのモデルに依存しない効率的なソリューションです。
ローカルな特徴重要度スコアと、各異常に寄与する要因を隠蔽するWhat-if分析ツールを提供する。
本稿では,AcME-ADの基礎とその既存手法に対する利点を解明し,合成データと実データの両方を用いて,その有効性を検証する。
論文 参考訳(メタデータ) (2024-03-02T16:11:58Z) - Neuro-symbolic Empowered Denoising Diffusion Probabilistic Models for
Real-time Anomaly Detection in Industry 4.0 [9.903035948408316]
本稿では,産業4.0プロセスにおけるリアルタイム異常予測のための拡散モデルを提案する。
ニューロシンボリックアプローチを用いて、我々は産業をモデルに統合し、スマートマニュファクチャリングに関するフォーマルな知識を付加する。
論文 参考訳(メタデータ) (2023-07-13T13:52:41Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
本稿では,このプラットフォームの設計について紹介し,AIによる視覚的品質検査の実証者の観点からの早期評価について述べる。
これは、この初期の評価活動で学んだ洞察と教訓によって補完される。
論文 参考訳(メタデータ) (2022-07-10T18:51:12Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Supporting Tool for The Transition of Existing Small and Medium
Enterprises Towards Industry 4.0 [0.0]
本研究の主な目的は,中小企業管理者を支援する方法論を提案し,産業用 4.0 ソリューションの実装の具体的な要件をよりよく理解することである。
提案された方法論は、中小企業マネジャーがいつ、どのように産業4.0に移行するかを決めるのに役立つだろう。
論文 参考訳(メタデータ) (2020-10-15T15:57:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。