論文の概要: Artificial Intelligence Approaches for Predictive Maintenance in the Steel Industry: A Survey
- arxiv url: http://arxiv.org/abs/2405.12785v1
- Date: Tue, 21 May 2024 13:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:10:09.381445
- Title: Artificial Intelligence Approaches for Predictive Maintenance in the Steel Industry: A Survey
- Title(参考訳): 鉄鋼産業における予測保守のための人工知能的アプローチ:調査
- Authors: Jakub Jakubowski, Natalia Wojak-Strzelecka, Rita P. Ribeiro, Sepideh Pashami, Szymon Bobek, Joao Gama, Grzegorz J Nalepa,
- Abstract要約: 予測保守(PdM)は産業4.0の柱の一つとして登場した。
この調査は、鉄鋼業界におけるAIベースのPdM分野における知識の現状を総合するものである。
- 参考スコア(独自算出の注目度): 9.088208602104105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive Maintenance (PdM) emerged as one of the pillars of Industry 4.0, and became crucial for enhancing operational efficiency, allowing to minimize downtime, extend lifespan of equipment, and prevent failures. A wide range of PdM tasks can be performed using Artificial Intelligence (AI) methods, which often use data generated from industrial sensors. The steel industry, which is an important branch of the global economy, is one of the potential beneficiaries of this trend, given its large environmental footprint, the globalized nature of the market, and the demanding working conditions. This survey synthesizes the current state of knowledge in the field of AI-based PdM within the steel industry and is addressed to researchers and practitioners. We identified 219 articles related to this topic and formulated five research questions, allowing us to gain a global perspective on current trends and the main research gaps. We examined equipment and facilities subjected to PdM, determined common PdM approaches, and identified trends in the AI methods used to develop these solutions. We explored the characteristics of the data used in the surveyed articles and assessed the practical implications of the research presented there. Most of the research focuses on the blast furnace or hot rolling, using data from industrial sensors. Current trends show increasing interest in the domain, especially in the use of deep learning. The main challenges include implementing the proposed methods in a production environment, incorporating them into maintenance plans, and enhancing the accessibility and reproducibility of the research.
- Abstract(参考訳): 予測保守(PdM)は産業4.0の柱の1つとして出現し、運用効率の向上、ダウンタイムの最小化、設備の寿命延長、故障防止のために重要になった。
幅広いPdMタスクは、産業センサから生成されたデータを使用する人工知能(AI)メソッドを使用して実行することができる。
鉄鋼産業は世界経済の重要な分野であり、環境のフットプリント、市場のグローバル化の性質、労働条件の要求などを考えると、この傾向の潜在的恩恵の1つである。
この調査は、鉄鋼業界におけるAIベースのPdMの分野における知識の現状を総合し、研究者や実践者に対処するものである。
我々は,この話題に関連する219の論文を特定し,5つの研究課題を定式化した。
PdM を対象とする機器や設備について検討し,PdM のアプローチを定式化し,これらのソリューションの開発に使用されるAI 手法の動向を明らかにした。
調査論文で用いたデータの特徴について検討し,本研究の実際的意義について検討した。
研究の大部分は、産業用センサーのデータを用いて、高炉や熱間圧延に焦点を当てている。
最近の傾向は、特にディープラーニングの利用において、ドメインに対する関心が増していることを示している。
主な課題は、生産環境で提案された手法の実装、保守計画への導入、研究のアクセシビリティと再現性の向上である。
関連論文リスト
- On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks [0.0]
ロボットマニピュレータの強化におけるAIの役割は、スマートマニュファクチャリングにおける重要なイノベーションに急速に結びついている。
この記事では、これらのイノベーションを実効力によって制御されたアプリケーションにまとめ、高品質な生産標準を維持する必要性を強調します。
この分析は、AI技術を検証するための共通のパフォーマンスメトリクスの必要性を強調した、将来の研究方向性の視点で締めくくっている。
論文 参考訳(メタデータ) (2024-09-25T11:29:26Z) - Data Issues in Industrial AI System: A Meta-Review and Research Strategy [10.540603300770885]
人工知能(AI)は、産業システムにおいてますます重要な役割を担っている。
近年、さまざまな業界でAIを採用する傾向にあるが、実際のAIの採用は認識されるほど発展していない。
これらのデータ問題にどのように対処するかは、業界と学術の両方に直面する重要な懸念事項である。
論文 参考訳(メタデータ) (2024-06-22T08:36:59Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
サイバー物理システム(CPS)は、予測保守や生産計画を含むアプリケーションに人工知能(AI)が活用できる膨大なデータセットを生成する。
AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
論文 参考訳(メタデータ) (2024-05-28T20:54:41Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
ビデオ異常検出(VAD)は,ビデオフレーム内の異常を認識することを目的とした課題である。
本稿では,産業シナリオにおけるVADに特化して設計された新しいデータセットIPADを提案する。
このデータセットは16の異なる産業用デバイスをカバーし、合成ビデオと実世界のビデオの両方を6時間以上保存している。
論文 参考訳(メタデータ) (2024-04-23T13:38:01Z) - Analysis and Applications of Deep Learning with Finite Samples in Full
Life-Cycle Intelligence of Nuclear Power Generation [21.938498455998303]
産業4.0の出現は、産業の文脈において人工知能(AI)の手法が取り入れられた。
しかし、複雑な工業用ミレウス、特にエネルギー探査と生産に関連するものは、長い尾のクラス分布、サンプルの不均衡、ドメインシフトを特徴とするデータを含むことが多い。
本研究は, 深層学習(DL)技術の適用を慎重に検討する, 原子力発電(NPG)の複雑で独特な産業シナリオに焦点を当てる。
論文 参考訳(メタデータ) (2023-11-07T06:17:57Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
産業用IoT(Industrial Internet of Things)は,産業用システムの運用を変革する有望な機会を提供する。
近年、人工知能(AI)はインテリジェントIIoTアプリケーションの実現に広く利用されている。
フェデレートラーニング(FL)は、複数のIIoTデバイスとマシンを協調して、ネットワークエッジでAIトレーニングを実行することで、インテリジェントなIIoTネットワークにとって特に魅力的である。
論文 参考訳(メタデータ) (2021-05-31T01:02:59Z) - The Duo of Artificial Intelligence and Big Data for Industry 4.0: Review
of Applications, Techniques, Challenges, and Future Research Directions [37.22337155095065]
本稿では,産業におけるAIとビッグデータのさまざまな側面について概観する。
私たちは、AIとビッグデータのデュオが産業4.0のさまざまなアプリケーションでどのように役立つかを強調し、分析します。
論文 参考訳(メタデータ) (2021-04-06T11:08:02Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。