Tunable coupling of a quantum phononic resonator to a transmon qubit with flip-chip architecture
- URL: http://arxiv.org/abs/2404.18540v1
- Date: Mon, 29 Apr 2024 09:28:45 GMT
- Title: Tunable coupling of a quantum phononic resonator to a transmon qubit with flip-chip architecture
- Authors: Xinhui Ruan, Li Li, Guihan Liang, Silu Zhao, Jia-heng Wang, Yizhou Bu, Bingjie Chen, Xiaohui Song, Xiang Li, He Zhang, Jinzhe Wang, Qianchuan Zhao, Kai Xu, Heng Fan, Yu-xi Liu, Jing Zhang, Zhihui Peng, Zhongcheng Xiang, Dongning Zheng,
- Abstract summary: A hybrid system with tunable coupling between phonons and qubits shows great potential for advancing quantum information processing.
In this work, we demonstrate strong and tunable coupling between a surface acoustic wave (SAW) resonator and a transmon qubit based on galvanic-contact flip-chip technique.
- Score: 27.214977464945797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A hybrid system with tunable coupling between phonons and qubits shows great potential for advancing quantum information processing. In this work, we demonstrate strong and tunable coupling between a surface acoustic wave (SAW) resonator and a transmon qubit based on galvanic-contact flip-chip technique. The coupling strength varies from $2\pi\times$7.0 MHz to -$2\pi\times$20.6 MHz, which is extracted from different vacuum Rabi oscillation frequencies. The phonon-induced ac Stark shift of the qubit at different coupling strengths is also shown. Our approach offers a good experimental platform for exploring quantum acoustics and hybrid systems.
Related papers
- Strong dispersive coupling between a mechanical resonator and a
fluxonium superconducting qubit [1.3828553628764202]
We extend the reach of circuit quantum acousto-dynamics experiments into a new range of frequencies.
We have engineered a qubit-phonon coupling rate of $gapprox2pitimes14textMHz$, and achieved a dispersive interaction that exceeds the decoherence rates of both systems.
Our results demonstrate the potential for fluxonium-based hybrid quantum systems, and a path for developing new quantum sensing and information processing schemes with phonons at frequencies below 700 MHz.
arXiv Detail & Related papers (2023-04-26T14:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Strong coupling between a microwave photon and a singlet-triplet qubit [0.0]
We introduce a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator.
Experiments on even charge parity states and at large magnetic fields allow to identify the relevant spin states.
Results pave the way towards large-scale quantum system based on singlet-triplet qubits.
arXiv Detail & Related papers (2023-03-29T16:20:24Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Coupling two charge qubits via a superconducting resonator operating in
the resonant and dispersive regimes [5.526775342940154]
We describe a new type of charge qubit formed by an electron confined in a triple-quantum-dot system.
We present the form for the long-range dipolar coupling between the charge qubit and a superconducting resonator.
We find that the fidelity for the iSWAP gate can reach fidelity higher than 99% for the noise level typical in experiments.
arXiv Detail & Related papers (2020-12-28T07:49:41Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Large flux-mediated coupling in hybrid electromechanical system with a
transmon qubit [0.0]
Control over the quantum states of a massive oscillator is important for several technological applications.
We present a hybrid device, consisting of a superconducting transmon qubit and a mechanical resonator coupled using the magnetic-flux.
With improvements in qubit coherence, this system offers a novel platform to realize rich interactions and could potentially provide full control over the quantum motional states.
arXiv Detail & Related papers (2020-01-16T08:59:14Z) - Thermal coupling and effect of subharmonic synchronization in a system
of two VO2 based oscillators [55.41644538483948]
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices.
The effective action radius RTC of coupling depends both on the total energy released during switching and on the average power.
In the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by 10 %.
The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
arXiv Detail & Related papers (2020-01-06T03:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.