IncidentResponseGPT: Generating Traffic Incident Response Plans with Generative Artificial Intelligence
- URL: http://arxiv.org/abs/2404.18550v4
- Date: Fri, 18 Oct 2024 13:50:10 GMT
- Title: IncidentResponseGPT: Generating Traffic Incident Response Plans with Generative Artificial Intelligence
- Authors: Artur Grigorev, Adriana-Simona Mihaita Khaled Saleh, Yuming Ou,
- Abstract summary: IncidentResponseGPT is a novel system that applies generative artificial intelligence (AI) to traffic incident response.
It generates incident response plans adapted to specific area, aiming to expedite decision-making for traffic management authorities.
- Score: 2.1711205684359247
- License:
- Abstract: The proposed IncidentResponseGPT framework - a novel system that applies generative artificial intelligence (AI) to potentially enhance the efficiency and effectiveness of traffic incident response. This model allows for synthesis of region-specific incident response guidelines and generates incident response plans adapted to specific area, aiming to expedite decision-making for traffic management authorities. This approach aims to accelerate incident resolution times by suggesting various recommendations (e.g. optimal rerouting strategies, estimating resource needs) to minimize the overall impact on the urban traffic network. The system suggests specific actions, including dynamic lane closures, optimized rerouting and dispatching appropriate emergency resources. We utilize the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank generated response plans based on criteria like impact minimization and resource efficiency based on their proximity to an human-proposed solution.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
We focus on a motion planning task for an evasive target in a partially observable multi-agent adversarial pursuit-evasion games (PEG)
These pursuit-evasion problems are relevant to various applications, such as search and rescue operations and surveillance robots.
We propose a hierarchical architecture that integrates a high-level diffusion model to plan global paths responsive to environment data.
arXiv Detail & Related papers (2024-03-16T03:53:55Z) - Multi-objective Optimal Roadside Units Deployment in Urban Vehicular Networks [7.951541004150428]
The significance of transportation efficiency, safety, and related services is increasing in urban vehicular networks.
Within such networks, roadside units (RSUs) serve as intermediates in facilitating communication.
In urban environments, the presence of various obstacles, such as buildings, gardens, lakes, and other infrastructure, poses challenges for the deployment of RSUs.
arXiv Detail & Related papers (2024-01-14T05:02:12Z) - Hierarchical Policy Blending as Inference for Reactive Robot Control [21.058662668187875]
Motion generation in cluttered, dense, and dynamic environments is a central topic in robotics.
We propose a hierarchical motion generation method that combines the benefits of reactive policies and planning.
Our experimental study in planar navigation and 6DoF manipulation shows that our proposed hierarchical motion generation method outperforms both myopic reactive controllers and online re-planning methods.
arXiv Detail & Related papers (2022-10-14T15:16:54Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Neural Motion Planning for Autonomous Parking [6.1805402105389895]
This paper presents a hybrid motion planning strategy that combines a deep generative network with a conventional motion planning method.
The proposed method effectively learns the representations of a given state, and shows improvement in terms of algorithm performance.
arXiv Detail & Related papers (2021-11-12T14:29:38Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z) - Near-Optimal Reactive Synthesis Incorporating Runtime Information [28.25296947005914]
We consider the problem of optimal reactive synthesis - compute a strategy that satisfies a mission specification in a dynamic environment.
We incorporate task-critical information, that is only available at runtime, into the strategy synthesis in order to improve performance.
arXiv Detail & Related papers (2020-07-31T14:41:35Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.