How to surpass no-go limits in Gaussian quantum error correction and entangled Gaussian state distillation?
- URL: http://arxiv.org/abs/2404.18586v2
- Date: Tue, 7 May 2024 04:24:55 GMT
- Title: How to surpass no-go limits in Gaussian quantum error correction and entangled Gaussian state distillation?
- Authors: En-Jui Chang, Ching-Yi Lai,
- Abstract summary: This paper introduces a Gaussian QEC protocol that relies solely on local Gaussian resources.
A pivotal component of our approach is CV gate teleportation using entangled Gaussian states, which facilitates the implementation of the partial transpose operation on a quantum channel.
- Score: 6.230751621285322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian quantum information processing with continuous-variable (CV) quantum information carriers holds significant promise for applications in quantum communication and quantum internet. However, applying Gaussian state distillation and quantum error correction (QEC) faces limitations imposed by no-go results concerning local Gaussian unitary operations and classical communications. This paper introduces a Gaussian QEC protocol that relies solely on local Gaussian resources. A pivotal component of our approach is CV gate teleportation using entangled Gaussian states, which facilitates the implementation of the partial transpose operation on a quantum channel. Consequently, we can efficiently construct a two-mode noise-polarized channel from two noisy Gaussian channels. Furthermore, this QEC protocol naturally extends to a nonlocal Gaussian state distillation protocol.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Quantifying quantum correlations in noisy Gaussian channels [0.0]
We describe a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states.
We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement.
arXiv Detail & Related papers (2022-07-26T11:34:35Z) - Deterministic Preparation of Non-Gaussian Quantum States: Applications
in Quantum Information Protocols [0.0]
We present a scheme that can prepare non-Gaussian quantum states on-demand, by applying a unitary transformation.
The resulting state exhibits a quantum vortex structure in quadrature space, confirming its non-Gaussian nature.
Such non-Gaussian quantum state also reveals increased entanglement content, as quantified by the Logarithmic Negativity and the Wigner function negative volume.
arXiv Detail & Related papers (2021-10-07T05:42:27Z) - Quantum Non-Gaussianity From An Indefinite Causal Order of Gaussian
Operations [0.0]
Quantum Non-Gaussian states are considered as a useful resource for many tasks in quantum information processing.
We are addressing to be very useful to engineer highly non-Gaussian states from operations whose order is controlled by degrees of freedom of a control qubit.
arXiv Detail & Related papers (2021-08-30T09:20:17Z) - Experimental demonstration of robustness of Gaussian quantum coherence [5.522952775766461]
We experimentally quantify the quantum coherence of a squeezed state and a Gaussian Einstein-Podolsky-Rosen entangled state transmitted in a thermal noise channel.
Our results pave the way for application of Gaussian quantum coherence in lossy and noisy environments.
arXiv Detail & Related papers (2021-05-24T14:16:03Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Schr\"odinger cat state preparation by non-Gaussian continuous variable
gate [0.0]
We propose a non-Gaussian continuous variable (CV) gate which is able to conditionally produce superposition of two "copies" of an arbitrary input state.
We show that this nonuniqueness manifests problems which may arise by extension of the Heisenberg picture onto the measurement-induced evolution of CV non-Gaussian networks.
arXiv Detail & Related papers (2020-04-12T16:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.