論文の概要: Low-Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers
- arxiv url: http://arxiv.org/abs/2404.18644v1
- Date: Mon, 29 Apr 2024 12:24:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:47:51.969783
- Title: Low-Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers
- Title(参考訳): バンド状超安定化器を用いた低オーバーヘッド欠陥適応表面コード
- Authors: Zuolin Wei, Tan He, Yangsen Ye, Dachao Wu, Yiming Zhang, Youwei Zhao, Weiping Lin, He-Liang Huang, Xiaobo Zhu, Jian-Wei Pan,
- Abstract要約: 欠陥格子上に表面コードを実装するための自動アダプタを導入する。
従来の手法とは異なり、このアダプタはより多くのキュービットを節約するために、新しく提案された包帯状超安定化器を利用する。
私たちの研究は、表面のコードを欠陥に適応させるという課題に対して、低オーバーヘッドで自動化されたソリューションを提示します。
- 参考スコア(独自算出の注目度): 4.146058318261507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To make practical quantum algorithms work, large-scale quantum processors protected by error-correcting codes are required to resist noise and ensure reliable computational outcomes. However, a major challenge arises from defects in processor fabrication, as well as occasional losses or cosmic rays during the computing process, all of which can lead to qubit malfunctions and disrupt error-correcting codes' normal operations. In this context, we introduce an automatic adapter to implement the surface code on defective lattices. Unlike previous approaches, this adapter leverages newly proposed bandage-like super-stabilizers to save more qubits when defects are clustered, thus enhancing the code distance and reducing super-stabilizer weight. For instance, in comparison with earlier methods, with a code size of 27 and a random defect rate of 2\%, the disabled qubits decrease by $1/3$, and the average preserved code distance increases by 63\%. This demonstrates a significant reduction in overhead when handling defects using our approach, and this advantage amplifies with increasing processor size and defect rates. Our work presents a low-overhead, automated solution to the challenge of adapting the surface code to defects, an essential step towards scaling up the construction of large-scale quantum computers for practical applications.
- Abstract(参考訳): 実用的な量子アルゴリズムを動作させるためには、誤り訂正符号で保護された大規模量子プロセッサがノイズに抵抗し、信頼性の高い計算結果を保証する必要がある。
しかし、プロセッサ製造の欠陥や、コンピュータ処理中の時折の損失や宇宙線によって生じる大きな課題は、量子ビットの故障を招き、エラー訂正符号の通常の操作を妨害する可能性がある。
そこで本稿では,欠陥格子上で表面コードを実装するための自動アダプタを提案する。
従来の手法とは異なり、このアダプタは新しく提案されたバンド状スーパースタビライザを利用して、欠陥がクラスタ化されているときにより多くのキュービットを節約し、コード距離を増大させ、スーパースタビライザの重量を減少させる。
例えば、以前の方法と比較すると、コードサイズ27でランダムな欠陥率2\%で、無効な量子ビットは1/3$で減少し、平均保存されたコード距離は63\%になる。
これは、我々のアプローチによる欠陥処理におけるオーバーヘッドの大幅な削減を示し、この利点は、プロセッササイズと欠陥率の増加によって増幅される。
我々の研究は、表面のコードを欠陥に適応させるという課題に対して、低オーバーヘッドで自動化されたソリューションを提示します。
関連論文リスト
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Codesign of quantum error-correcting codes and modular chiplets in the presence of defects [3.9145409368937867]
製造エラーは、固体量子デバイスをフォールトトレラントアプリケーションに必要なサイズにスケールアップする際の課題となる。
我々は、任意に分散した欠陥を持つキュービットアレイに適応した表面コードをシミュレートし、欠陥が忠実性にどう影響するかを特徴付けるメトリクスを見つける。
欠陥率と目標忠実度に基づいて最適なチップレットサイズを選択することは、欠陥による追加のエラー修正オーバーヘッドを制限するのに不可欠である。
論文 参考訳(メタデータ) (2023-04-29T01:06:52Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations [3.47670594338385]
ゲートテレポーテーションのための資源状態を効率的に作成するためのポストセレクションに基づくアルゴリズムを提案する。
提案アルゴリズムは,符号距離による論理誤差の指数的抑制を実証し,耐故障性を実現する。
提案手法は,誤り訂正型およびノイズの多い中間規模量子コンピュータにおいて,量子アルゴリズムのリソース要求を削減するための有望な経路を示す。
論文 参考訳(メタデータ) (2023-03-30T13:46:52Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Adaptive surface code for quantum error correction in the presence of
temporary or permanent defects [0.0]
同定されたゾーンの検疫と適切な欠陥検出アルゴリズムを組み合わせることで、有限符号サイズでの量子誤差補正の利点を維持できることが示される。
結果は、欠陥が避けられないような大規模量子コンピュータの実験的な実装への道を開いた。
論文 参考訳(メタデータ) (2022-11-15T19:39:49Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
本稿では,雑音およびシンドローム測定誤差を考慮に入れた安定化符号群に対するニューラルネットワークに基づくデコーダを提案する。
重要なイノベーションは、エラーシンドロームを小さなスケールで自動デコードすることである。
このような前処理によって,実用アプリケーションにおいて最大2桁の誤差率を効果的に削減できることを示す。
論文 参考訳(メタデータ) (2021-01-18T19:02:09Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。