Task and Domain Adaptive Reinforcement Learning for Robot Control
- URL: http://arxiv.org/abs/2404.18713v3
- Date: Thu, 19 Sep 2024 02:36:53 GMT
- Title: Task and Domain Adaptive Reinforcement Learning for Robot Control
- Authors: Yu Tang Liu, Nilaksh Singh, Aamir Ahmad,
- Abstract summary: We present a novel adaptive agent to dynamically adapt policy in response to different tasks and environmental conditions.
The agent is trained using a custom, highly parallelized simulator built on IsaacGym.
We perform zero-shot transfer to fly the blimp in the real world to solve various tasks.
- Score: 0.34137115855910755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (DRL) has shown remarkable success in simulation domains, yet its application in designing robot controllers remains limited, due to its single-task orientation and insufficient adaptability to environmental changes. To overcome these limitations, we present a novel adaptive agent that leverages transfer learning techniques to dynamically adapt policy in response to different tasks and environmental conditions. The approach is validated through the blimp control challenge, where multitasking capabilities and environmental adaptability are essential. The agent is trained using a custom, highly parallelized simulator built on IsaacGym. We perform zero-shot transfer to fly the blimp in the real world to solve various tasks. We share our code at https://github.com/robot-perception-group/adaptive_agent.
Related papers
- EnvBridge: Bridging Diverse Environments with Cross-Environment Knowledge Transfer for Embodied AI [7.040779338576156]
Large Language Models (LLMs) can generate text planning or control code for robots.
These methods still face challenges in terms of flexibility and applicability across different environments.
We propose EnvBridge to enhance the adaptability and robustness of robotic manipulation agents.
arXiv Detail & Related papers (2024-10-22T11:52:22Z) - Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning [61.294110816231886]
We introduce a sparse, reusable, and flexible policy, Sparse Diffusion Policy (SDP)
SDP selectively activates experts and skills, enabling efficient and task-specific learning without retraining the entire model.
Demos and codes can be found in https://forrest-110.io/sparse_diffusion_policy/.
arXiv Detail & Related papers (2024-07-01T17:59:56Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
Quality-Diversity algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills.
Existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions.
This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments.
arXiv Detail & Related papers (2022-04-07T14:07:51Z) - Robot Learning of Mobile Manipulation with Reachability Behavior Priors [38.49783454634775]
Mobile Manipulation (MM) systems are ideal candidates for taking up the role of a personal assistant in unstructured real-world environments.
Among other challenges, MM requires effective coordination of the robot's embodiments for executing tasks that require both mobility and manipulation.
We study the integration of robotic reachability priors in actor-critic RL methods for accelerating the learning of MM for reaching and fetching tasks.
arXiv Detail & Related papers (2022-03-08T12:44:42Z) - Robust Deep Reinforcement Learning for Quadcopter Control [0.8687092759073857]
In this work, we use Robust Markov Decision Processes (RMDP) to train the drone control policy.
It opts for pessimistic optimization to handle potential gaps between policy transfer from one environment to another.
The trained control policy is tested on the task of quadcopter positional control.
arXiv Detail & Related papers (2021-11-06T16:35:13Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion.
The proposed method constantly updates the interaction model, samples feasible sequences of actions of estimated the state-action trajectories, and then applies the optimal actions to maximize the reward.
arXiv Detail & Related papers (2021-01-19T12:57:12Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.