論文の概要: The Landscape of Unfolding with Machine Learning
- arxiv url: http://arxiv.org/abs/2404.18807v1
- Date: Mon, 29 Apr 2024 15:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:08:44.494990
- Title: The Landscape of Unfolding with Machine Learning
- Title(参考訳): 機械学習による展開の風景
- Authors: Nathan Huetsch, Javier Mariño Villadamigo, Alexander Shmakov, Sascha Diefenbacher, Vinicius Mikuni, Theo Heimel, Michael Fenton, Kevin Greif, Benjamin Nachman, Daniel Whiteson, Anja Butter, Tilman Plehn,
- Abstract要約: MLベースの展開のための、既知の、アップグレードされた、そして新しい方法のセットについて説明する。
すべての技術が複雑な観測可能な領域で粒子レベルのスペクトルを正確に再現できることがわかった。
- 参考スコア(独自算出の注目度): 33.536094588185605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent innovations from machine learning allow for data unfolding, without binning and including correlations across many dimensions. We describe a set of known, upgraded, and new methods for ML-based unfolding. The performance of these approaches are evaluated on the same two datasets. We find that all techniques are capable of accurately reproducing the particle-level spectra across complex observables. Given that these approaches are conceptually diverse, they offer an exciting toolkit for a new class of measurements that can probe the Standard Model with an unprecedented level of detail and may enable sensitivity to new phenomena.
- Abstract(参考訳): 機械学習による最近のイノベーションは、データの展開を可能にし、多くの次元にまたがる相関を含む。
MLベースの展開のための、既知の、アップグレードされた、そして新しい方法のセットについて説明する。
これらの手法の性能は、同じ2つのデータセットで評価される。
すべての技術が複雑な観測可能な領域で粒子レベルのスペクトルを正確に再現できることがわかった。
これらのアプローチが概念的に多様であることを考えると、彼らは新しい種類の測定のエキサイティングなツールキットを提供し、標準モデルを前例のないレベルの詳細で探究し、新しい現象に対する感度を高めることができる。
関連論文リスト
- Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Understanding recent deep-learning techniques for identifying collective
variables of molecular dynamics [5.176190855174938]
高次元準安定分子系は、しばしばいくつかの特徴、すなわち集団変数(CV)によって特徴づけられる。
近年,様々な深層学習に基づくCV識別技術が開発され,複雑な分子系の正確なモデリングと効率的なシミュレーションが実現されている。
CVの探索には、無限小ジェネレータの固有関数の計算や、基礎となるダイナミクスに関連付けられた転送演算子、あるいは再構成エラーの最小化によるオートエンコーダの学習の2つの異なるカテゴリについて検討する。
論文 参考訳(メタデータ) (2023-07-01T15:26:08Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Machine learning enabling high-throughput and remote operations at
large-scale user facilities [0.0]
機械学習(ML)手法は、大規模なデータセットをリアルタイムで処理し、解釈するために定期的に開発されている。
我々は、National Synchrotron Light Source II (NSLS-II)において、複数のビームラインでのオンザフライ解析のための様々なアーチティパルMLモデルを実証した。
論文 参考訳(メタデータ) (2022-01-09T17:43:03Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
適応的階層的類似度メトリック学習法を提案する。
ノイズに敏感な2つの情報、すなわち、クラスワイドのばらつきとサンプルワイドの一貫性を考える。
提案手法は,現在の深層学習手法と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-10-29T02:12:18Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
我々は,潜伏状態を利用してモデルの異なる部分を適切に修正することにより,より良い説明が得られ,予測性能が向上することを示した。
また,2つの異なる自己スーパービジョン技術を用いて,考察対象の自己スーパービジョンのタイプに関連する意味ある概念を抽出する手法を提案した。
論文 参考訳(メタデータ) (2021-08-25T07:09:57Z) - Improving Deep Learning Sound Events Classifiers using Gram Matrix
Feature-wise Correlations [1.2891210250935146]
本手法では,一般CNNの全てのアクティベーションを分析し,Gram Matricesを用いて特徴表現を生成する。
提案手法はどのCNNにも適用可能であり,2つのデータセット上で4つの異なるアーキテクチャを実験的に評価した結果,ベースラインモデルが一貫して改善されることが示された。
論文 参考訳(メタデータ) (2021-02-23T16:08:02Z) - Extendable and invertible manifold learning with geometry regularized
autoencoders [9.742277703732187]
データ探索における基本的な課題は、データ内の固有幾何学をキャプチャする単純化された低次元表現を抽出することである。
このタスクに対する一般的なアプローチは、多様体学習にカーネルメソッドを使用する。
オートエンコーダのボトルネックに幾何正規化項を組み込むことにより,両手法を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T15:59:10Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
我々は、複数の関連するタスクから共通の機能の集合を学習し、その知識を新しい未知のタスクに転送する、という2つの課題に対処する、高速でサンプル効率のアルゴリズムを提供する。
また、これらの線形特徴を学習する際のサンプルの複雑さに関する情報理論の下限も提供する。
論文 参考訳(メタデータ) (2020-02-26T18:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。