論文の概要: Extendable and invertible manifold learning with geometry regularized
autoencoders
- arxiv url: http://arxiv.org/abs/2007.07142v2
- Date: Sun, 22 Nov 2020 23:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 13:48:28.872211
- Title: Extendable and invertible manifold learning with geometry regularized
autoencoders
- Title(参考訳): 幾何正規化オートエンコーダを用いた拡張可能・可逆多様体学習
- Authors: Andr\'es F. Duque, Sacha Morin, Guy Wolf, Kevin R. Moon
- Abstract要約: データ探索における基本的な課題は、データ内の固有幾何学をキャプチャする単純化された低次元表現を抽出することである。
このタスクに対する一般的なアプローチは、多様体学習にカーネルメソッドを使用する。
オートエンコーダのボトルネックに幾何正規化項を組み込むことにより,両手法を統合する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 9.742277703732187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental task in data exploration is to extract simplified low
dimensional representations that capture intrinsic geometry in data, especially
for faithfully visualizing data in two or three dimensions. Common approaches
to this task use kernel methods for manifold learning. However, these methods
typically only provide an embedding of fixed input data and cannot extend to
new data points. Autoencoders have also recently become popular for
representation learning. But while they naturally compute feature extractors
that are both extendable to new data and invertible (i.e., reconstructing
original features from latent representation), they have limited capabilities
to follow global intrinsic geometry compared to kernel-based manifold learning.
We present a new method for integrating both approaches by incorporating a
geometric regularization term in the bottleneck of the autoencoder. Our
regularization, based on the diffusion potential distances from the
recently-proposed PHATE visualization method, encourages the learned latent
representation to follow intrinsic data geometry, similar to manifold learning
algorithms, while still enabling faithful extension to new data and
reconstruction of data in the original feature space from latent coordinates.
We compare our approach with leading kernel methods and autoencoder models for
manifold learning to provide qualitative and quantitative evidence of our
advantages in preserving intrinsic structure, out of sample extension, and
reconstruction. Our method is easily implemented for big-data applications,
whereas other methods are limited in this regard.
- Abstract(参考訳): データ探索における基本的な課題は、データの内在的幾何学を捉える単純化された低次元表現を抽出することである。
このタスクに対する一般的なアプローチは、多様体学習にカーネルメソッドを使用する。
しかし、これらの手法は通常、固定入力データの埋め込みしか提供せず、新しいデータポイントに拡張できない。
オートエンコーダも最近、表現学習に人気がある。
しかし、新しいデータと可逆性(すなわち潜在表現から元の特徴を再構築する)の両方に拡張可能な特徴抽出子を自然に計算する一方で、カーネルベースの多様体学習と比較して、グローバルな内在幾何学に従う能力は限られている。
オートエンコーダのボトルネックに幾何正規化項を組み込むことにより,両手法を統合する新しい手法を提案する。
我々の正規化は、最近提案されたPHATE可視化法から拡散ポテンシャル距離に基づいており、学習された潜在表現は、多様体学習アルゴリズムと同様、本質的なデータ幾何に従うことを奨励する一方で、新しいデータへの忠実な拡張と、潜在座標から元の特徴空間におけるデータの再構成を可能にする。
我々は,本手法を,主要なカーネル手法とオートエンコーダモデルと比較し,本質的な構造保存,サンプル拡張,再構成の利点の質的かつ定量的な証拠を提供する。
本手法はビッグデータアプリケーションに容易に実装できるが,他の手法は限定的である。
関連論文リスト
- Pullback Flow Matching on Data Manifolds [10.187244125099479]
プルバックフローマッチング(Pullback Flow Matching、PFM)は、データ多様体上の生成モデリングのためのフレームワークである。
PFMの有効性を、合成、データダイナミクス、タンパク質配列データに適用し、特定の性質を持つ新規なタンパク質を生成することによって実証する。
本手法は, 創薬・材料科学に強い可能性を示し, 特定の性質を持つ新規試料の生成に大きな関心を寄せている。
論文 参考訳(メタデータ) (2024-10-06T16:41:26Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders [45.29194877564103]
本研究は、クラスラベルなどの半教師付き情報を付加できる非対称符号化復号プロセスを備えたチャートオートエンコーダを導入する。
このようなネットワークの近似力を議論し、周囲空間の次元ではなく、本質的にデータ多様体の内在次元に依存する境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T19:58:03Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Genetic Programming for Manifold Learning: Preserving Local Topology [5.226724669049025]
本稿では,局所的なトポロジを保存する多様体学習に遺伝的プログラミングを用いる新しい手法を提案する。
これは,地域構造(トポロジー)が最重要課題であるタスクにおいて,大幅な性能向上が期待できる。
論文 参考訳(メタデータ) (2021-08-23T03:48:48Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z) - Multi-Objective Genetic Programming for Manifold Learning: Balancing
Quality and Dimensionality [4.4181317696554325]
最先端の多様体学習アルゴリズムはこの変換の実行方法において不透明である。
多様体の品質と次元の競合する目的を自動的にバランスさせる多目的アプローチを導入する。
提案手法は,基礎および最先端の多様体学習手法と競合する。
論文 参考訳(メタデータ) (2020-01-05T23:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。