論文の概要: Evidence Is All You Need: Ordering Imaging Studies via Language Model Alignment with the ACR Appropriateness Criteria
- arxiv url: http://arxiv.org/abs/2409.19177v2
- Date: Tue, 1 Oct 2024 14:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:11:01.531626
- Title: Evidence Is All You Need: Ordering Imaging Studies via Language Model Alignment with the ACR Appropriateness Criteria
- Title(参考訳): 言語モデルアライメントによる画像研究の順序付けとACR適性基準
- Authors: Michael S. Yao, Allison Chae, Charles E. Kahn Jr., Walter R. Witschey, James C. Gee, Hersh Sagreiya, Osbert Bastani,
- Abstract要約: 我々は,エビデンスに基づくガイドラインに沿う患者に対して,画像研究を推奨することで,言語モデルを活用するための枠組みを導入する。
患者の"ワンライナー"シナリオの新たなデータセットを公開し、実験をパワーアップし、最先端の言語モデルを最適化して、画像の順序付けにおいて臨床医と同等の精度を達成する。
- 参考スコア(独自算出の注目度): 22.897900474995012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic imaging studies are an increasingly important component of the workup and management of acutely presenting patients. However, ordering appropriate imaging studies according to evidence-based medical guidelines is a challenging task with a high degree of variability between healthcare providers. To address this issue, recent work has investigated if generative AI and large language models can be leveraged to help clinicians order relevant imaging studies for patients. However, it is challenging to ensure that these tools are correctly aligned with medical guidelines, such as the American College of Radiology's Appropriateness Criteria (ACR AC). In this study, we introduce a framework to intelligently leverage language models by recommending imaging studies for patient cases that are aligned with evidence-based guidelines. We make available a novel dataset of patient "one-liner" scenarios to power our experiments, and optimize state-of-the-art language models to achieve an accuracy on par with clinicians in image ordering. Finally, we demonstrate that our language model-based pipeline can be used as intelligent assistants by clinicians to support image ordering workflows and improve the accuracy of imaging study ordering according to the ACR AC. Our work demonstrates and validates a strategy to leverage AI-based software to improve trustworthy clinical decision making in alignment with expert evidence-based guidelines.
- Abstract(参考訳): 画像診断研究は、急性期患者のワークアップと管理において、ますます重要な要素となっている。
しかし、エビデンスベースの医療ガイドラインに従って適切な画像研究を発注することは、医療提供者間の多様性の高い課題である。
この問題に対処するために、最近の研究は、生成的AIと大規模言語モデルを利用して、臨床医が患者に対して関連する画像研究を発注するのに役立つかどうかを調査している。
しかしながら、これらのツールが、American College of Radiology's Appropriateness Criteria (ACR AC)のような医療ガイドラインに正しく適合していることを保証することは困難である。
本研究では,エビデンスに基づくガイドラインに準拠した患者に対して,画像研究を推奨することで,言語モデルをインテリジェントに活用する枠組みを提案する。
患者の"ワンライナー"シナリオの新たなデータセットを公開し、実験をパワーアップし、最先端の言語モデルを最適化して、画像の順序付けにおいて臨床医と同等の精度を達成する。
最後に、我々の言語モデルに基づくパイプラインは、画像注文ワークフローをサポートし、ACR ACによる画像検索の精度を向上させるために、臨床医のインテリジェントアシスタントとして使用できることを示した。
我々の研究は、専門家のエビデンスに基づくガイドラインに従って、AIベースのソフトウェアを活用して信頼できる臨床的意思決定を改善する戦略を実証し、検証する。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - UIT-DarkCow team at ImageCLEFmedical Caption 2024: Diagnostic Captioning for Radiology Images Efficiency with Transformer Models [0.0]
本研究は, 診断キャプション(診断キャプション)と呼ばれる放射線画像からの自動テキスト生成の開発に焦点をあてる。
目的は、報告の質と効率を高めるツールを提供することであり、臨床実習とディープラーニング研究の両方に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-05-27T09:46:09Z) - VISION: Toward a Standardized Process for Radiology Image Management at the National Level [3.793492459789475]
我々は,米国退役軍人局(VA)電子健康記録データベースに関連付けられた,信頼できる放射線画像の収集を行った経験について述べる。
主な洞察は、臨床から研究可能な環境への画像転送に必要な特定の手順を明らかにすることである。
論文 参考訳(メタデータ) (2024-04-29T16:30:24Z) - Application Of Vision-Language Models For Assessing Osteoarthritis
Disease Severity [0.43431539537721414]
変形性関節症(OA)は、正確な診断方法を必要とする世界的な健康上の課題である。
OAアセスメントのための既存のディープラーニングモデルは、単一タスクシステムである。
本研究では,X線画像とそれに対応するレポートを用いて,視覚言語処理モデルを用いてOA重大度を予測する。
論文 参考訳(メタデータ) (2024-01-12T02:43:58Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。