Quantum Benchmarking via Random Dynamical Quantum Maps
- URL: http://arxiv.org/abs/2404.18846v1
- Date: Mon, 29 Apr 2024 16:37:11 GMT
- Title: Quantum Benchmarking via Random Dynamical Quantum Maps
- Authors: Daniel Volya, Prabhat Mishra,
- Abstract summary: We present a benchmarking protocol for universal quantum computers.
This protocol provides a holistic assessment of system-wide error rates.
We implement the protocol on state-of-the-art transmon qubits provided by IBM Quantum.
- Score: 3.5297361401370044
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a benchmarking protocol for universal quantum computers, achieved through the simulation of random dynamical quantum maps. This protocol provides a holistic assessment of system-wide error rates, encapsulating both gate inaccuracies and the errors associated with mid-circuit qubit measurements and resets. By employing random quantum circuits and segmenting mid-circuit qubit measurement and reset in a repeated fashion, we steer the system of qubits to an ensemble of steady-states. These steady-states are described by random Wishart matrices, and align with the steady-state characteristics previously identified in random Lindbladian dynamics, including the universality property. The protocol assesses the resulting ensemble probability distribution measured in the computational basis, effectively avoiding a tomographic reconstruction. Our various numerical simulations demonstrate the relationship between the final distribution and different error sources. Additionally, we implement the protocol on state-of-the-art transmon qubits provided by IBM Quantum, drawing comparisons between empirical results, theoretical expectations, and simulations derived from a fitted noise model of the device.
Related papers
- Qudit-native measurement protocol for dynamical correlations using Hadamard tests [0.0]
Dynamical correlations reveal important out-of-equilibrium properties of the underlying quantum many-body system.
We propose a modified protocol to overcome this limitation by decomposing qudit observables into unitary operations.
Our scheme can readily be implemented on various platforms and offers a wide range of applications.
arXiv Detail & Related papers (2024-07-03T18:01:29Z) - Random-matrix models of monitored quantum circuits [0.0]
We study the competition between Haar-random unitary dynamics and measurements for unstructured systems of qubits.
For projective measurements, we derive various properties of the statistical ensemble of Kraus operators.
We expect that the statistical properties of Kraus operators will serve as a model for the entangling phase of monitored quantum systems.
arXiv Detail & Related papers (2023-12-14T18:46:53Z) - Universal quantum processors in spin systems via robust local pulse sequences [0.0]
We propose a protocol to realize quantum simulation and computation in spin systems with long-range interactions.
Our approach relies on the local addressing of single spins with external fields parametrized by Walsh functions.
We demonstrate and numerically benchmark our protocol with examples from the dynamics of spin models, quantum error correction and quantum optimization algorithms.
arXiv Detail & Related papers (2023-11-17T15:55:04Z) - Dynamical subset sampling of quantum error correcting protocols [0.0]
We show the capabilities of dynamical subset sampling with examples from fault-tolerant (FT) QEC.
We show that, in a typical stabilizer simulation with incoherent Pauli noise of strength $p = 10-3$, our method can reach a required sampling accuracy on the logical failure rate.
arXiv Detail & Related papers (2023-09-22T10:32:20Z) - Measurement-Induced Criticality is Tomographically Optimal [0.0]
We develop a shadow tomography protocol utilizing the randomized measurement scheme based on hybrid quantum circuits.
Unlike conventional protocols that perform all measurements by the end of unitary evolutions, our protocol allows measurements to occur at any spacetime position throughout the quantum evolution.
arXiv Detail & Related papers (2023-08-03T09:35:08Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.