RSCaMa: Remote Sensing Image Change Captioning with State Space Model
- URL: http://arxiv.org/abs/2404.18895v3
- Date: Tue, 21 May 2024 13:26:12 GMT
- Title: RSCaMa: Remote Sensing Image Change Captioning with State Space Model
- Authors: Chenyang Liu, Keyan Chen, Bowen Chen, Haotian Zhang, Zhengxia Zou, Zhenwei Shi,
- Abstract summary: Remote Sensing Image Change Captioning (RSICC) aims to describe surface changes between multi-temporal remote sensing images in language.
This poses challenges to spatial and temporal modeling of bi-temporal features.
We propose a novel RSCaMa model, which achieves efficient joint spatial-temporal modeling through multiple CaMa layers.
- Score: 29.945966783242337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote Sensing Image Change Captioning (RSICC) aims to describe surface changes between multi-temporal remote sensing images in language, including the changed object categories, locations, and dynamics of changing objects (e.g., added or disappeared). This poses challenges to spatial and temporal modeling of bi-temporal features. Despite previous methods progressing in the spatial change perception, there are still weaknesses in joint spatial-temporal modeling. To address this, in this paper, we propose a novel RSCaMa model, which achieves efficient joint spatial-temporal modeling through multiple CaMa layers, enabling iterative refinement of bi-temporal features. To achieve efficient spatial modeling, we introduce the recently popular Mamba (a state space model) with a global receptive field and linear complexity into the RSICC task and propose the Spatial Difference-aware SSM (SD-SSM), overcoming limitations of previous CNN- and Transformer-based methods in the receptive field and computational complexity. SD-SSM enhances the model's ability to capture spatial changes sharply. In terms of efficient temporal modeling, considering the potential correlation between the temporal scanning characteristics of Mamba and the temporality of the RSICC, we propose the Temporal-Traversing SSM (TT-SSM), which scans bi-temporal features in a temporal cross-wise manner, enhancing the model's temporal understanding and information interaction. Experiments validate the effectiveness of the efficient joint spatial-temporal modeling and demonstrate the outstanding performance of RSCaMa and the potential of the Mamba in the RSICC task. Additionally, we systematically compare three different language decoders, including Mamba, GPT-style decoder, and Transformer decoder, providing valuable insights for future RSICC research. The code will be available at \emph{\url{https://github.com/Chen-Yang-Liu/RSCaMa}}
Related papers
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model [7.286873011001679]
We propose a purely SSM-based approach with linear correlations for complexityD human pose estimation in monocular video video.
Specifically, we propose a bidirectional global temporal-local-temporal block that comprehensively models human joint relations within individual frames as well as across frames.
This strategy provides a more logical geometric ordering strategy, resulting in a combined-local spatial scan.
arXiv Detail & Related papers (2024-08-07T04:38:03Z) - Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - Revisiting the Spatial and Temporal Modeling for Few-shot Action
Recognition [16.287968292213563]
We propose SloshNet, a new framework that revisits the spatial and temporal modeling for few-shot action recognition in a finer manner.
We extensively validate the proposed SloshNet on four few-shot action recognition datasets, including Something-Something V2, Kinetics, UCF101, and HMDB51.
arXiv Detail & Related papers (2023-01-19T08:34:04Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z) - Learn to cycle: Time-consistent feature discovery for action recognition [83.43682368129072]
Generalizing over temporal variations is a prerequisite for effective action recognition in videos.
We introduce Squeeze Re Temporal Gates (SRTG), an approach that favors temporal activations with potential variations.
We show consistent improvement when using SRTPG blocks, with only a minimal increase in the number of GFLOs.
arXiv Detail & Related papers (2020-06-15T09:36:28Z) - STH: Spatio-Temporal Hybrid Convolution for Efficient Action Recognition [39.58542259261567]
We present a novel S-Temporal Hybrid Network (STH) which simultaneously encodes spatial and temporal video information with a small parameter.
Such a design enables efficient-temporal modeling and maintains a small model scale.
STH enjoys performance superiority over 3D CNNs while maintaining an even smaller parameter cost than 2D CNNs.
arXiv Detail & Related papers (2020-03-18T04:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.