論文の概要: Fault-tolerant compiling of classically hard IQP circuits on hypercubes
- arxiv url: http://arxiv.org/abs/2404.19005v1
- Date: Mon, 29 Apr 2024 18:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:19:58.295610
- Title: Fault-tolerant compiling of classically hard IQP circuits on hypercubes
- Title(参考訳): 超真空上の古典的ハードIQP回路の耐故障性コンパイル
- Authors: Dominik Hangleiter, Marcin Kalinowski, Dolev Bluvstein, Madelyn Cain, Nishad Maskara, Xun Gao, Aleksander Kubica, Mikhail D. Lukin, Michael J. Gullans,
- Abstract要約: 我々は,量子サンプリング回路を実現するためのハードウェア効率,フォールトトレラントアプローチを開発した。
本研究では,D$D$IQP回路の硬さ解析とランダムサンプリングの検証のための第2モーメント特性の理論を開発した。
この結果から,特定のエラー訂正コードと現実的なハードウェアを備えた共構成可能なアルゴリズムにおいて,フォールトトレラントコンパイルが強力なツールとして注目されている。
- 参考スコア(独自算出の注目度): 34.225996865725605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Realizing computationally complex quantum circuits in the presence of noise and imperfections is a challenging task. While fault-tolerant quantum computing provides a route to reducing noise, it requires a large overhead for generic algorithms. Here, we develop and analyze a hardware-efficient, fault-tolerant approach to realizing complex sampling circuits. We co-design the circuits with the appropriate quantum error correcting codes for efficient implementation in a reconfigurable neutral atom array architecture, constituting what we call a fault-tolerant compilation of the sampling algorithm. Specifically, we consider a family of $[[2^D , D, 2]]$ quantum error detecting codes whose transversal and permutation gate set can realize arbitrary degree-$D$ instantaneous quantum polynomial (IQP) circuits. Using native operations of the code and the atom array hardware, we compile a fault-tolerant and fast-scrambling family of such IQP circuits in a hypercube geometry, realized recently in the experiments by Bluvstein et al. [Nature 626, 7997 (2024)]. We develop a theory of second-moment properties of degree-$D$ IQP circuits for analyzing hardness and verification of random sampling by mapping to a statistical mechanics model. We provide evidence that sampling from hypercube IQP circuits is classically hard to simulate and analyze the linear cross-entropy benchmark (XEB) in comparison to the average fidelity. To realize a fully scalable approach, we first show that Bell sampling from degree-$4$ IQP circuits is classically intractable and can be efficiently validated. We further devise new families of $[[O(d^D),D,d]]$ color codes of increasing distance $d$, permitting exponential error suppression for transversal IQP sampling. Our results highlight fault-tolerant compiling as a powerful tool in co-designing algorithms with specific error-correcting codes and realistic hardware.
- Abstract(参考訳): ノイズや不完全性の存在下で計算的に複雑な量子回路を実現することは難しい課題である。
フォールトトレラントな量子コンピューティングはノイズを低減するためのルートを提供するが、汎用アルゴリズムには大きなオーバーヘッドを必要とする。
そこで我々は,複雑なサンプリング回路を実現するためのハードウェア効率,フォールトトレラントアプローチを開発し,解析する。
我々は回路を、再構成可能な中性原子配列アーキテクチャにおける効率的な実装のための適切な量子誤り訂正符号で設計し、サンプリングアルゴリズムのフォールトトレラントコンパイルと呼ばれるものを構成する。
具体的には、変換ゲートと置換ゲートセットが任意の次数-$D$瞬時量子多項式(IQP)回路を実現することができる$[[2^D , D, 2]]$量子エラー検出符号の族を考える。
コードと原子配列ハードウェアのネイティブ操作を用いて、そのようなIQP回路のフォールトトレラントで高速なファミリをハイパーキューブ幾何学でコンパイルし、Bluvsteinらによる最近の実験で実現した[Nature 626, 7997 (2024)]。
本研究では,D$D$IQP回路の2次モーメント特性の理論を開発し,統計力学モデルにマッピングすることで,ハードネスを分析し,ランダムサンプリングの検証を行う。
我々は,ハイパーキューブIQP回路からのサンプリングが,平均忠実度と比較して線形クロスエントロピーベンチマーク(XEB)をシミュレートし,解析することが古典的に困難であることを示す。
完全スケーラブルなアプローチを実現するために,次数4$のIQP回路からのベルサンプリングが古典的に抽出可能であり,効率よく検証可能であることを示す。
さらに、$[[O(d^D,D,d]]$$ 距離$d$のカラーコードの新しいファミリーを考案し、逆IQPサンプリングの指数的エラー抑制を可能にした。
この結果から,エラー訂正コードとリアルハードウェアを併用したアルゴリズム設計において,フォールトトレラントコンパイルが強力なツールとして注目されている。
関連論文リスト
- Halving the Cost of Quantum Algorithms with Randomization [0.138120109831448]
量子信号処理(QSP)は、線形演算子の変換を実装するための体系的なフレームワークを提供する。
近年の研究では、量子チャネルへのユニタリゲートを促進する技術であるランダム化コンパイルが開発されている。
提案アルゴリズムは, 平均進化が対象関数に収束するように戦略的に選択されたランダム化の確率的混合を実装し, 誤差は等価個体よりも2次的に小さい。
論文 参考訳(メタデータ) (2024-09-05T17:56:51Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Polynomial-Time Classical Simulation of Noisy IQP Circuits with Constant Depth [0.5188841610098435]
雑音の除去や非偏極化を行う任意のIQP回路の場合、出力分布は古典的コンピュータで効率的にサンプリング可能であることを示す。
我々は、IQP回路が対角ゲートの深い部分を持つという事実を利用して、ノイズが予測可能となり、回路内の絡み合いの大規模な分解を誘発する。
論文 参考訳(メタデータ) (2024-03-21T17:55:26Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Robust sparse IQP sampling in constant depth [3.670008893193884]
NISQ(ノイズのある中間スケール量子)は、堅牢な量子優位性と完全なフォールトトレラント量子計算の証明のないアプローチである。
本稿では,最小限の誤差補正条件でノイズに頑健な証明可能な超多項式量子優位性を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:41:08Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Optimal qubit assignment and routing via integer programming [0.22940141855172028]
論理量子回路を2ビット接続に制限のあるハードウェアにマッピングする問題を考察する。
我々はこの問題を2変数のネットワークフロー定式化を用いて整数線形プログラムとしてモデル化する。
本稿では,回路の忠実度,全深度,クロストークの尺度などのコスト関数について考察する。
論文 参考訳(メタデータ) (2021-06-11T15:02:26Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
本稿では,外部量子誤り訂正符号を用いた猫符号に基づくフォールトトレラント量子コンピュータを提案する。
我々は、外符号が繰り返し符号か薄い矩形曲面符号である場合、量子誤差補正を数値的にシミュレートする。
約1,000の超伝導回路部品で、フォールトトレラントな量子コンピュータを構築することができる。
論文 参考訳(メタデータ) (2020-12-07T23:22:40Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。