論文の概要: Classical Post-processing for Unitary Block Optimization Scheme to Reduce the Effect of Noise on Optimization of Variational Quantum Eigensolvers
- arxiv url: http://arxiv.org/abs/2404.19027v5
- Date: Fri, 01 Nov 2024 15:12:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:32:06.969380
- Title: Classical Post-processing for Unitary Block Optimization Scheme to Reduce the Effect of Noise on Optimization of Variational Quantum Eigensolvers
- Title(参考訳): 変分量子固有解器の最適化における雑音低減のための単元ブロック最適化方式の古典的後処理
- Authors: Xiaochuan Ding, Bryan K. Clark,
- Abstract要約: 変分量子固有解法(VQE)は、ハミルトンの古典的に難解な基底状態を見つけるための有望なアプローチである。
ここではUBOSを改良する2つの古典的後処理手法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Variational Quantum Eigensolvers (VQE) are a promising approach for finding the classically intractable ground state of a Hamiltonian. The Unitary Block Optimization Scheme (UBOS) is a state-of-the-art VQE method which works by sweeping over gates and finding optimal parameters for each gate in the environment of other gates. UBOS improves the convergence time to the ground state by an order of magnitude over Stochastic Gradient Descent (SGD). It nonetheless suffers in both rate of convergence and final converged energies in the face of highly noisy expectation values coming from shot noise. Here we develop two classical post-processing techniques which improve UBOS especially when measurements have large noise. Using Gaussian Process Regression (GPR), we generate artificial augmented data using original data from the quantum computer to reduce the overall error when solving for the improved parameters. Using Double Robust Optimization plus Rejection (DROPR), we prevent outlying data which are atypically noisy from resulting in a particularly erroneous single optimization step thereby increasing robustness against noisy measurements. Combining these techniques further reduces the final relative error that UBOS reaches by a factor of three without adding additional quantum measurement or sampling overhead. This work further demonstrates that developing techniques which use classical resources to post-process quantum measurement results can significantly improve VQE algorithms.
- Abstract(参考訳): 変分量子固有解法(VQE)は、ハミルトンの古典的に難解な基底状態を見つけるための有望なアプローチである。
Unitary Block Optimization Scheme (UBOS) は最先端のVQE方式であり、ゲートを網羅し、他のゲート環境における各ゲートの最適パラメータを求める。
UBOSは、SGD (Stochastic Gradient Descent) に対する等級によって、基底状態への収束時間を改善する。
それにもかかわらず、ショットノイズから生じる非常にノイズの多い期待値に直面して、収束率と最終的な収束エネルギーの両方に苦しむ。
ここではUBOSを改良する2つの古典的後処理手法について述べる。
ガウス過程回帰(GPR)を用いて、量子コンピュータからの原データを用いて人工的な拡張現実データを生成し、改良されたパラメータを解く際の全体的なエラーを低減する。
DROPR(Double Robust Optimization plus Rejection)を用いることで、非典型的にノイズの多いデータの外部への流出を防止し、特に誤った単一最適化ステップを発生させ、ノイズ測定に対するロバスト性を高める。
これらの手法を組み合わせることで、UBOSが3倍の誤差で到達する最終的な相対誤差をさらに削減し、追加の量子測定やサンプリングオーバーヘッドを追加することなく実現できる。
この研究は、古典的資源を用いて量子計測結果を後処理する技術を開発することにより、VQEアルゴリズムを著しく改善することを示した。
関連論文リスト
- Gradient Normalization with(out) Clipping Ensures Convergence of Nonconvex SGD under Heavy-Tailed Noise with Improved Results [60.92029979853314]
本稿では,NSGDCを含まない勾配正規化(NSGDC-VR)について検討する。
両アルゴリズムの理論的結果の大幅な改善について述べる。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping [3.47862118034022]
ノイズ指向リマッピング(Noss-Directed Remapping, NDAR)は、ある種のノイズを利用して二進最適化問題を解決するアルゴリズムである。
我々は、グローバルなアトラクタ状態を特徴とするダイナミックスを備えたノイズの多い量子プロセッサへのアクセスを検討する。
我々のアルゴリズムは、ノイズアトラクターを高品質な解に変換する方法で、コスト関数ハミルトニアンを反復的にゲージ変換することでノイズアトラクター状態をブートストラップする。
論文 参考訳(メタデータ) (2024-04-01T18:28:57Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
問題の大きさが大きくなるにつれて、量子資源のスケーリングが一定の成功確率に達するか検討する。
この結果から,ハイブリッド量子古典アルゴリズムは古典外ループの破壊力を回避する必要がある可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-31T18:01:15Z) - Gradient-Free optimization algorithm for single-qubit quantum classifier [0.3314882635954752]
量子デバイスによるバレンプラトーの影響を克服するために、勾配のない最適化アルゴリズムを提案する。
提案アルゴリズムは分類タスクに対して実証され,Adamを用いた手法と比較される。
提案アルゴリズムはAdamよりも高速に精度を向上できる。
論文 参考訳(メタデータ) (2022-05-10T08:45:03Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
変分型ハイブリッド量子古典アルゴリズム(VHQCAs)は、ノイズの多い量子デバイス上で動作することを目的とした量子アルゴリズムのクラスである。
これらのアルゴリズムは、パラメータ化量子回路(アンサッツ)と量子古典フィードバックループを用いる。
古典的なデバイスは、量子デバイス上ではるかに効率的に計算できるコスト関数を最小限に抑えるためにパラメータを最適化するために使用される。
論文 参考訳(メタデータ) (2021-06-16T10:40:00Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。