論文の概要: Preconditioning Natural and Second Order Gradient Descent in Quantum Optimization: A Performance Benchmark
- arxiv url: http://arxiv.org/abs/2504.16518v1
- Date: Wed, 23 Apr 2025 08:44:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.054218
- Title: Preconditioning Natural and Second Order Gradient Descent in Quantum Optimization: A Performance Benchmark
- Title(参考訳): 量子最適化における自然および二次グラディエント染料のプレコンディショニング:性能ベンチマーク
- Authors: Théo Lisart-Liebermann, Arcesio Castañeda Medina,
- Abstract要約: 勾配雑音に対するBFGS更新を安定化するための新しい手法を提案する。
ノイズ感度に対処するため,BFGS更新にアペナル化を取り入れた結果が改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optimization of parametric quantum circuits is technically hindered by three major obstacles: the non-convex nature of the objective function, noisy gradient evaluations, and the presence of barren plateaus. As a result, the selection of classical optimizer becomes a critical factor in assessing and exploiting quantum-classical applications. One promising approach to tackle these challenges involves incorporating curvature information into the parameter update. The most prominent methods in this field are quasi-Newton and quantum natural gradient methods, which can facilitate faster convergence compared to first-order approaches. Second order methods however exhibit a significant trade-off between computational cost and accuracy, as well as heightened sensitivity to noise. This study evaluates the performance of three families of optimizers on synthetically generated MaxCut problems on a shallow QAOA algorithm. To address noise sensitivity and iteration cost, we demonstrate that incorporating secant-penalization in the BFGS update rule (SP-BFGS) yields improved outcomes for QAOA optimization problems, introducing a novel approach to stabilizing BFGS updates against gradient noise.
- Abstract(参考訳): パラメトリック量子回路の最適化は、目的関数の非凸性、雑音勾配評価、バレンプラトーの存在という3つの大きな障害によって技術的に妨げられている。
その結果、古典的なオプティマイザの選択は、量子古典的応用を評価し、活用する上で重要な要素となる。
これらの課題に取り組むための有望なアプローチの1つは、パラメータ更新に曲率情報を統合することである。
この分野でもっとも顕著な手法は準ニュートン法と量子自然勾配法であり、一階法に比べて収束が速い。
しかし、第2次法では計算コストと精度の間に大きなトレードオフがあり、ノイズに対する感度が高められている。
本研究は, 浅部QAOAアルゴリズムを用いて, 合成されたMaxCut問題に対する3種類の最適化器の性能を評価する。
ノイズ感度とイテレーションコストに対処するため,BFGS更新規則(SP-BFGS)にセカント・ペナル化を組み込むことで,QAOA最適化問題の改善が達成され,勾配雑音に対するBFGS更新を安定化する新たなアプローチが導入された。
関連論文リスト
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Variational quantum algorithm for enhanced continuous variable optical
phase sensing [0.0]
変分量子アルゴリズム(VQA)は、ノイズ量子デバイスにおける幅広い問題に対処するために用いられるハイブリッド量子古典的アプローチである。
本研究では, 連続変数プラットフォーム上でのパラメータ推定の最適化のために, 圧縮光に基づく変分アルゴリズムを実装した。
論文 参考訳(メタデータ) (2023-12-21T14:11:05Z) - Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm [0.7252027234425334]
本稿では,新しい断熱パスに基づくパラメータ設定法を提案する。
本手法は, 3SAT問題に適用した場合の最適化コストを, サブ線形レベルに著しく低減する。
論文 参考訳(メタデータ) (2023-11-30T01:06:41Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は、Near-term Intermediate-Scale Quantum Computer (NISQ)のための変分量子アルゴリズムである。
本稿では,古典的ベクトルに対する現実的な騒音の影響について検討する。
その結果,Adam と AMSGrads はショットノイズの存在下で最高の性能を示した。
論文 参考訳(メタデータ) (2023-07-19T17:22:44Z) - Bayesian Optimization for QAOA [0.0]
量子回路を最適化するためのベイズ最適化手法を提案する。
提案手法により,量子回路の呼び出し回数を大幅に削減できることを示す。
提案手法は,ノイズの多い中間規模量子デバイス上でのQAOAのハイブリッド特性を活用するための,有望なフレームワークであることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T13:59:47Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
変分型ハイブリッド量子古典アルゴリズム(VHQCAs)は、ノイズの多い量子デバイス上で動作することを目的とした量子アルゴリズムのクラスである。
これらのアルゴリズムは、パラメータ化量子回路(アンサッツ)と量子古典フィードバックループを用いる。
古典的なデバイスは、量子デバイス上ではるかに効率的に計算できるコスト関数を最小限に抑えるためにパラメータを最適化するために使用される。
論文 参考訳(メタデータ) (2021-06-16T10:40:00Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
サンプルごとのHessian-vector積と勾配を用いて、自己チューニングの二次構造を構築する。
モデルに基づく手続きが雑音勾配設定に収束することを証明する。
これは自己チューニング二次体を構築するための興味深いステップである。
論文 参考訳(メタデータ) (2020-11-09T22:07:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。