Chaos-Assisted Dynamical Tunneling in Flat Band Superwires
- URL: http://arxiv.org/abs/2404.19074v1
- Date: Mon, 29 Apr 2024 19:38:07 GMT
- Title: Chaos-Assisted Dynamical Tunneling in Flat Band Superwires
- Authors: Anton Marius Graf, Ke Lin, MyeongSeo Kim, Joonas Keski-Rahkonen, Alvar Daza, Eric Heller,
- Abstract summary: Electrons can navigate along channels we call superwires, gently guided without brute force confinement.
Quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space.
We quantify tunneling rates across various lattice configurations, and demonstrate the tunneling can be suppressed in a controlled fashion.
- Score: 4.756578228865389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent theoretical investigations have revealed unconventional transport mechanisms within high Brilliouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static or energetic confinement observed in traditional wave guides or one-dimensional electron wires. The quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space, and enabling the emergence of several parallel channels. This paper provides the underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively conceptualized through the lens of a paraxial approximation. Our results further reveal that superwires predominantly exist within flat bands, emerging from eigenstates that represent linear combinations of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice configurations, and demonstrate the tunneling can be suppressed in a controlled fashion, illustrating potential implications in future nanodevices.
Related papers
- Flat-band (de)localization emulated with a superconducting qubit array [0.20742830443146304]
We use a superconducting qubit array to emulate a tight-binding model on the rhombic lattice.
We observe disorder-induced parameter localization for dispersive bands and disorder-induced delocalization for flat bands.
arXiv Detail & Related papers (2024-10-10T12:53:53Z) - Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings [41.94295877935867]
We show the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel.
We also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings.
arXiv Detail & Related papers (2024-05-16T15:16:33Z) - Tunneling dynamics of $^{164}$Dy supersolids and droplets [0.0]
tunneling dynamics of a magnetic $164$Dy quantum gas in an elongated or pancake skewed double-well trap is investigated.
In the elongated trap and for sufficiently large offset, the different configurations exhibit collective macroscopic tunneling.
arXiv Detail & Related papers (2024-01-08T08:17:58Z) - Dynamics and transport in the boundary-driven dissipative Klein-Gordon
chain [0.0]
We consider the dynamics of a classical Klein-Gordon chain coupled to coherent driving and subject to dissipation solely at its boundaries.
We propose a non-local Lyapunov exponent as an experimentally measurable diagnostic of many-body chaos in this system.
arXiv Detail & Related papers (2022-09-08T18:00:10Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Controlling directed atomic motion and second-order tunneling of a
spin-orbit-coupled atom in optical lattices [8.118975693510722]
We show that the spin-orbit (SO) coupling adds some new results to the tunneling dynamics in both multiphoton resonance and far-off-resonance parameter regimes.
These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.
arXiv Detail & Related papers (2020-11-03T00:54:03Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.