Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings
- URL: http://arxiv.org/abs/2405.10176v1
- Date: Thu, 16 May 2024 15:16:33 GMT
- Title: Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings
- Authors: Carlos Vega, Alberto Muñoz de las Heras, Diego Porras, Alejandro González-Tudela,
- Abstract summary: We show the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel.
We also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-reciprocal couplings or drivings are known to induce steady-state, directional, amplification in driven-dissipative bosonic lattices. This amplification phenomena has been recently linked to the existence of a non-zero topological invariant defined with the system's dynamical matrix, and thus, it depends critically on the couplings' structure. In this work, we demonstrate the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel, and then study their impact on topological amplification phenomena. We show that these couplings can lead to topological invariant values greater than one which induce topological, multi-mode amplification and metastability behaviour not predicted in other setups. Besides, we also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings. Finally, we conclude by showing how such phenomena can be naturally obtained in two-dimensional topological insulators hosting multiple edge modes.
Related papers
- Emerging Non-Hermitian Topology in a Chiral Driven-Dissipative Bose-Hubbard Model [0.0]
We introduce a driven-dissipative Bose-Hubbard chain describing coupled lossy photonic modes.
We numerically prove that the steady-state solution is stabilized by an inhomogeneous profile of the driving amplitude.
Our work shows the emergence of non-Hermitian topological phases in an interacting model that can be naturally implemented with superconducting circuits.
arXiv Detail & Related papers (2024-11-13T19:00:34Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Optomechanical realization of the bosonic Kitaev-Majorana chain [0.0]
We report the experimental realization of its bosonic analogue in a nano-optomechanical network.
We observe several extraordinary phenomena in the bosonic dynamics and transport.
We present an experimental demonstration of an exponentially enhanced response to a small perturbation as a consequence of non-Hermitian topology.
arXiv Detail & Related papers (2023-09-11T21:10:22Z) - Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Driven-dissipative topological phases in parametric resonator arrays [62.997667081978825]
We find two phases of topological amplification, both with directional transport and exponential gain with the number of sites, and one of them featuring squeezing.
We characterize the resilience to disorder of the different phases and their stability, gain, and noise-to-signal ratio.
We discuss their experimental implementation with state-of-the-art techniques.
arXiv Detail & Related papers (2022-07-27T18:00:05Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.