論文の概要: In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery
- arxiv url: http://arxiv.org/abs/2404.19094v2
- Date: Wed, 17 Jul 2024 15:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:07:40.905285
- Title: In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery
- Title(参考訳): In-Contextシンボリック回帰:関数発見のための大規模言語モデルを活用する
- Authors: Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, Pekka Marttinen,
- Abstract要約: 本稿では,記号回帰のタスクにLarge Language Models(LLM)を利用する,最初の包括的フレームワークを紹介する。
In-Context Symbolic Regression (ICSR) は、外部LLMで関数形式を反復的に洗練し、その係数を外部LLMで決定するSR手法である。
以上の結果から,LLMは与えられたデータに適合するシンボリック方程式の発見に成功し,最高のSRベースラインの総合性能を4つのベンチマークで評価した。
- 参考スコア(独自算出の注目度): 5.2387832710686695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State of the art Symbolic Regression (SR) methods currently build specialized models, while the application of Large Language Models (LLMs) remains largely unexplored. In this work, we introduce the first comprehensive framework that utilizes LLMs for the task of SR. We propose In-Context Symbolic Regression (ICSR), an SR method which iteratively refines a functional form with an LLM and determines its coefficients with an external optimizer. ICSR leverages LLMs' strong mathematical prior both to propose an initial set of possible functions given the observations and to refine them based on their errors. Our findings reveal that LLMs are able to successfully find symbolic equations that fit the given data, matching or outperforming the overall performance of the best SR baselines on four popular benchmarks, while yielding simpler equations with better out of distribution generalization.
- Abstract(参考訳): State of the Art Symbolic Regression (SR) メソッドは現在、特殊なモデルを構築しているが、Large Language Models (LLMs) の応用はいまだほとんど検討されていない。
本稿では,SR のタスクに LLM を利用する最初の包括的フレームワークを紹介する。
本稿では,LLMを用いて関数形式を反復的に洗練し,外部オプティマイザを用いてその係数を決定するSR手法であるIn-Context Symbolic Regression (ICSR)を提案する。
ICSR は LLM の強い数学的先行性を利用して、観測値から可能な関数の初期セットを提案し、それらの誤差に基づいてそれらを洗練する。
この結果から, LLM は与えられたデータに適合するシンボリック方程式の発見に成功し, 4つの一般的なベンチマークにおいて, 最高のSRベースラインの全体的な性能を一致または向上し, 分布の一般化を良くしたより単純な方程式が得られることがわかった。
関連論文リスト
- Understanding LLM Embeddings for Regression [8.095573259696092]
本論文は埋め込み型回帰に関する最初の包括的な研究の1つを提供する。
LLMを機能として組み込むことは,従来の機能工学よりも高次元回帰作業に有効であることを示す。
私たちは異なるモデル効果、特にモデルのサイズと言語理解の貢献を定量化します。
論文 参考訳(メタデータ) (2024-11-22T03:33:51Z) - Towards Scalable Semantic Representation for Recommendation [65.06144407288127]
大規模言語モデル(LLM)に基づく意味的IDを構築するために、Mixture-of-Codesを提案する。
提案手法は,識別性と寸法の堅牢性に優れたスケーラビリティを実現し,提案手法で最高のスケールアップ性能を実現する。
論文 参考訳(メタデータ) (2024-10-12T15:10:56Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
本稿では,大規模言語モデルに組み込まれたRE知識を十分に活用する新しい手法であるSelf-Promptingフレームワークを紹介する。
我々のフレームワークは3段階の多様性アプローチを用いてLSMを誘導し、スクラッチから特定の関係をカプセル化する複数の合成サンプルを生成する。
ベンチマークデータセットを用いた実験により,既存のLCMベースのゼロショットRE法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-02T01:12:54Z) - Symbolic Regression with a Learned Concept Library [9.395222766576342]
本稿では,データセットを最もよく説明できる,コンパクトなプログラム仮説を探索する手法を提案する。
我々のアルゴリズムはLaSRと呼ばれ、ゼロショットクエリを大規模言語モデルに使用して概念を発見し、進化させます。
LaSRは、ディープラーニングと進化的アルゴリズムに基づいて、最先端のSRアプローチを大幅に上回っている。
論文 参考訳(メタデータ) (2024-09-14T08:17:30Z) - Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models [48.846159555253834]
Few-Shot Relation extract (FSRE)は自然言語処理(NLP)の研究者にアピールする
大規模言語モデル(LLM)の近年の出現により、多くの研究者が文脈学習(ICL)を通じてFSREを探求している。
論文 参考訳(メタデータ) (2024-07-12T03:31:11Z) - DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation [3.5113201254928117]
逐次レコメンデーション(SR)タスクは、ユーザの過去のインタラクションと好みの変化を関連付けることで、レコメンデーションの精度を高める。
従来のモデルは、トレーニングデータ内のシーケンシャルなパターンをキャプチャすることだけに集中し、外部ソースからアイテムタイトルに埋め込まれたより広いコンテキストやセマンティックな情報を無視することが多い。
DelRecは、SRモデルから知識を抽出し、LLMがより効果的なシーケンシャルレコメンデーションのためにこれらの補足情報を容易に理解し利用できるようにすることを目的としている。
論文 参考訳(メタデータ) (2024-06-17T02:47:09Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Rehearsal [49.24054920683246]
大規模言語モデル(LLM)は、連続学習中に破滅的な忘れ込みに悩まされる。
自己合成リハーサル(Self-Synthesized Rehearsal, SSR)と呼ばれるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-02T16:11:23Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。