DelGrad: Exact gradients in spiking networks for learning transmission delays and weights
- URL: http://arxiv.org/abs/2404.19165v1
- Date: Tue, 30 Apr 2024 00:02:34 GMT
- Title: DelGrad: Exact gradients in spiking networks for learning transmission delays and weights
- Authors: Julian Göltz, Jimmy Weber, Laura Kriener, Peter Lake, Melika Payvand, Mihai A. Petrovici,
- Abstract summary: Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information.
Recent work has demonstrated the substantial advantages of learning these delays along with synaptic weights.
We propose an analytical approach for calculating exact loss gradients with respect to both synaptic weights and delays in an event-based fashion.
- Score: 0.9411751957919126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Transmission delays play an important role in shaping these temporal characteristics. Recent work has demonstrated the substantial advantages of learning these delays along with synaptic weights, both in terms of accuracy and memory efficiency. However, these approaches suffer from drawbacks in terms of precision and efficiency, as they operate in discrete time and with approximate gradients, while also requiring membrane potential recordings for calculating parameter updates. To alleviate these issues, we propose an analytical approach for calculating exact loss gradients with respect to both synaptic weights and delays in an event-based fashion. The inclusion of delays emerges naturally within our proposed formalism, enriching the model's search space with a temporal dimension. Our algorithm is purely based on the timing of individual spikes and does not require access to other variables such as membrane potentials. We explicitly compare the impact on accuracy and parameter efficiency of different types of delays - axonal, dendritic and synaptic. Furthermore, while previous work on learnable delays in SNNs has been mostly confined to software simulations, we demonstrate the functionality and benefits of our approach on the BrainScaleS-2 neuromorphic platform.
Related papers
- Discovering Long-Term Effects on Parameter Efficient Fine-tuning [36.83255498301937]
Pre-trained Artificial Neural Networks (Annns) exhibit robust pattern recognition capabilities.
Annns and BNNs share extensive similarities with the human brain, specifically Biological Neural Networks (BNNs)
Annns can acquire new knowledge through fine-tuning.
arXiv Detail & Related papers (2024-08-24T03:27:29Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
Traffic flow forecasting is a fundamental research issue for transportation planning and management.
In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting.
However, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed.
arXiv Detail & Related papers (2024-02-02T08:55:23Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks [3.985532502580783]
Recent studies have found that the time delay of neurons plays an important role in the learning process.
configuring the precise timing of the spike is a promising direction for understanding and improving the transmission process of temporal information in SNNs.
In this paper, we verify the effectiveness of integrating time delay into supervised learning and propose a module that modulates the axonal delay through short-term memory.
arXiv Detail & Related papers (2022-04-20T16:56:42Z) - Ultra-low Latency Spiking Neural Networks with Spatio-Temporal
Compression and Synaptic Convolutional Block [4.081968050250324]
Spiking neural networks (SNNs) have neuro-temporal information capability, low processing feature, and high biological plausibility.
Neuro-MNIST, CIFAR10-S, DVS128 gesture datasets need to aggregate individual events into frames with a higher temporal resolution for event stream classification.
We propose a processing-temporal compression method to aggregate individual events into a few time steps of NIST current to reduce the training and inference latency.
arXiv Detail & Related papers (2022-03-18T15:14:13Z) - Backpropagation with Biologically Plausible Spatio-Temporal Adjustment
For Training Deep Spiking Neural Networks [5.484391472233163]
The success of deep learning is inseparable from backpropagation.
We propose a biological plausible spatial adjustment, which rethinks the relationship between membrane potential and spikes.
Secondly, we propose a biologically plausible temporal adjustment making the error propagate across the spikes in the temporal dimension.
arXiv Detail & Related papers (2021-10-17T15:55:51Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.