Hardware-aware training of models with synaptic delays for digital event-driven neuromorphic processors
- URL: http://arxiv.org/abs/2404.10597v1
- Date: Tue, 16 Apr 2024 14:22:58 GMT
- Title: Hardware-aware training of models with synaptic delays for digital event-driven neuromorphic processors
- Authors: Alberto Patino-Saucedo, Roy Meijer, Amirreza Yousefzadeh, Manil-Dev Gomony, Federico Corradi, Paul Detteter, Laura Garrido-Regife, Bernabe Linares-Barranco, Manolis Sifalakis,
- Abstract summary: We propose a framework to train and deploy, in digital neuromorphic hardware, highly performing spiking neural network models (SNNs)
The training accounts for both platform constraints, such as synaptic weight precision and the total number of parameters per core, as a function of the network size.
We evaluate trained models in two neuromorphic digital hardware platforms: Intel Loihi and Imec Seneca.
- Score: 1.3415700412919966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Configurable synaptic delays are a basic feature in many neuromorphic neural network hardware accelerators. However, they have been rarely used in model implementations, despite their promising impact on performance and efficiency in tasks that exhibit complex (temporal) dynamics, as it has been unclear how to optimize them. In this work, we propose a framework to train and deploy, in digital neuromorphic hardware, highly performing spiking neural network models (SNNs) where apart from the synaptic weights, the per-synapse delays are also co-optimized. Leveraging spike-based back-propagation-through-time, the training accounts for both platform constraints, such as synaptic weight precision and the total number of parameters per core, as a function of the network size. In addition, a delay pruning technique is used to reduce memory footprint with a low cost in performance. We evaluate trained models in two neuromorphic digital hardware platforms: Intel Loihi and Imec Seneca. Loihi offers synaptic delay support using the so-called Ring-Buffer hardware structure. Seneca does not provide native hardware support for synaptic delays. A second contribution of this paper is therefore a novel area- and memory-efficient hardware structure for acceleration of synaptic delays, which we have integrated in Seneca. The evaluated benchmark involves several models for solving the SHD (Spiking Heidelberg Digits) classification task, where minimal accuracy degradation during the transition from software to hardware is demonstrated. To our knowledge, this is the first work showcasing how to train and deploy hardware-aware models parameterized with synaptic delays, on multicore neuromorphic hardware accelerators.
Related papers
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
Linear recurrent neural networks enable powerful long-range sequence modeling with constant memory usage and time-per-token during inference.
Unstructured sparsity offers a compelling solution, enabling substantial reductions in compute and memory requirements when accelerated by compatible hardware platforms.
We find that highly sparse linear RNNs consistently achieve better efficiency-performance trade-offs than dense baselines.
arXiv Detail & Related papers (2025-02-03T13:09:21Z) - Efficient Synaptic Delay Implementation in Digital Event-Driven AI Accelerators [1.260842513389711]
We introduce Shared Circular Delay Queue (SCDQ), a novel hardware structure for supporting synaptic delays on digital neuromorphic accelerators.
Our analysis and hardware results show that it scales better in terms of memory, than current commonly used approaches, and is more amortizable to algorithm- hardware co-optimizations.
arXiv Detail & Related papers (2025-01-23T12:30:04Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - DelGrad: Exact event-based gradients in spiking networks for training delays and weights [1.5226147562426895]
Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information.
We propose DelGrad, an event-based method to compute exact loss gradients for both synaptic weights and delays.
We experimentally demonstrate the memory efficiency and accuracy benefits of adding delays to SNNs on noisy mixed-signal hardware.
arXiv Detail & Related papers (2024-04-30T00:02:34Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Hardware-Friendly Synaptic Orders and Timescales in Liquid State
Machines for Speech Classification [0.0]
Liquid State Machines are brain inspired spiking neural networks (SNNs) with random reservoir connectivity.
We analyze the role of synaptic orders namely: delta (high output for single time step), 0th (rectangular with a finite pulse width), 1st (exponential fall) and 2nd order (exponential rise and fall)
arXiv Detail & Related papers (2021-04-29T11:20:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.