Deep Lead Optimization: Leveraging Generative AI for Structural Modification
- URL: http://arxiv.org/abs/2404.19230v1
- Date: Tue, 30 Apr 2024 03:17:42 GMT
- Title: Deep Lead Optimization: Leveraging Generative AI for Structural Modification
- Authors: Odin Zhang, Haitao Lin, Hui Zhang, Huifeng Zhao, Yufei Huang, Yuansheng Huang, Dejun Jiang, Chang-yu Hsieh, Peichen Pan, Tingjun Hou,
- Abstract summary: This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD.
We introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization.
- Score: 12.167178956742113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
Related papers
- Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation [0.0]
We present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol)
LEOMol is a generative modeling framework for the efficient generation of optimized molecules.
Our approach consistently demonstrates superior performance compared to previous state-of-the-art models.
arXiv Detail & Related papers (2024-07-02T13:42:21Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
This work introduces several new generative adversarial network models based on engineering integration of parametrized quantum circuits into known molecular generative adversarial networks.
The introduced machine learning models incorporate a new multi- parameter reward function grounded in reinforcement learning principles.
arXiv Detail & Related papers (2023-12-28T14:10:26Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Scaffold-constrained molecular generation [0.0]
We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation.
We showcase the method's ability to perform scaffold-constrained generation on various tasks.
arXiv Detail & Related papers (2020-09-15T15:41:18Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
arXiv Detail & Related papers (2020-04-29T16:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.