3D Gaussian Blendshapes for Head Avatar Animation
- URL: http://arxiv.org/abs/2404.19398v2
- Date: Thu, 2 May 2024 10:58:57 GMT
- Title: 3D Gaussian Blendshapes for Head Avatar Animation
- Authors: Shengjie Ma, Yanlin Weng, Tianjia Shao, Kun Zhou,
- Abstract summary: We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars.
The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes.
High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting.
- Score: 31.488663463060416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
Related papers
- RMAvatar: Photorealistic Human Avatar Reconstruction from Monocular Video Based on Rectified Mesh-embedded Gaussians [17.99475480217687]
We introduce RMAvatar, a novel human avatar representation with Gaussian splatting embedded on mesh to learn avatar from a monocular video.
We utilize the explicit mesh geometry to represent motion and shape of a virtual human and implicit appearance rendering with Gaussian Splatting.
We conduct extensive experiments on public datasets, RMAvatar shows state-of-the-art performance on both rendering quality and quantitative evaluations.
arXiv Detail & Related papers (2025-01-13T07:32:44Z) - Gaussian Eigen Models for Human Heads [28.49783203616257]
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources.
We introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars.
arXiv Detail & Related papers (2024-07-05T14:30:24Z) - GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh [97.47701169876272]
GoMAvatar is a novel approach for real-time, memory-efficient, high-quality human modeling.
GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality.
arXiv Detail & Related papers (2024-04-11T17:59:57Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
We introduce a novel approach to creating ultra-realistic head avatars and rendering them in real-time.
UV-mapped 3D mesh is utilized to capture sharp and rich textures on smooth surfaces, while 3D Gaussian Splatting is employed to represent complex geometric structures.
Experiments that our modeled results exceed those of state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded
Gaussian Splatting [26.849406891462557]
We present SplattingAvatar, a hybrid 3D representation of human avatars with Gaussian Splatting embedded on a triangle mesh.
SplattingAvatar renders over 300 FPS on a modern GPU and 30 FPS on a mobile device.
arXiv Detail & Related papers (2024-03-08T06:28:09Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - HHAvatar: Gaussian Head Avatar with Dynamic Hairs [27.20228210350169]
We proposeAvatar represented by controllable 3D Gaussians for high-fidelity head avatar with dynamic hair modeling.
Our approach outperforms other state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering quality at 2K resolution.
arXiv Detail & Related papers (2023-12-05T11:01:44Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians [41.378083782290545]
We introduce a new method to create photorealistic head avatars that are fully controllable in terms of expression, pose, and viewpoint.
The core idea is a dynamic 3D representation based on 3D Gaussian splats rigged to a parametric morphable face model.
We demonstrate the animation capabilities of our photorealistic avatar in several challenging scenarios.
arXiv Detail & Related papers (2023-12-04T17:28:35Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
We propose IMavatar, a novel method for learning implicit head avatars from monocular videos.
Inspired by the fine-grained control mechanisms afforded by conventional 3DMMs, we represent the expression- and pose-related deformations via learned blendshapes and skinning fields.
We show quantitatively and qualitatively that our method improves geometry and covers a more complete expression space compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-14T15:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.