FactCheck Editor: Multilingual Text Editor with End-to-End fact-checking
- URL: http://arxiv.org/abs/2404.19482v1
- Date: Tue, 30 Apr 2024 11:55:20 GMT
- Title: FactCheck Editor: Multilingual Text Editor with End-to-End fact-checking
- Authors: Vinay Setty,
- Abstract summary: 'FactCheck Editor' is an advanced text editor designed to automate fact-checking and correct factual inaccuracies.
It supports over 90 languages and utilizes transformer models to assist humans in the labor-intensive process of fact verification.
- Score: 1.985242455423935
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce 'FactCheck Editor', an advanced text editor designed to automate fact-checking and correct factual inaccuracies. Given the widespread issue of misinformation, often a result of unintentional mistakes by content creators, our tool aims to address this challenge. It supports over 90 languages and utilizes transformer models to assist humans in the labor-intensive process of fact verification. This demonstration showcases a complete workflow that detects text claims in need of verification, generates relevant search engine queries, and retrieves appropriate documents from the web. It employs Natural Language Inference (NLI) to predict the veracity of claims and uses LLMs to summarize the evidence and suggest textual revisions to correct any errors in the text. Additionally, the effectiveness of models used in claim detection and veracity assessment is evaluated across multiple languages.
Related papers
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model [11.287933170894311]
Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR)
This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings.
arXiv Detail & Related papers (2024-09-12T06:50:45Z) - Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors [11.07539342949602]
We propose an end-to-end framework for detecting factual errors in text summarization.
Our framework uses a diverse set of LLM prompts to identify factual inconsistencies.
We calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination.
arXiv Detail & Related papers (2024-06-18T18:59:37Z) - GenAudit: Fixing Factual Errors in Language Model Outputs with Evidence [64.95492752484171]
We present GenAudit -- a tool intended to assist fact-checking LLM responses for document-grounded tasks.
We train models to execute these tasks, and design an interactive interface to present suggested edits and evidence to users.
To ensure that most errors are flagged by the system, we propose a method that can increase the error recall while minimizing impact on precision.
arXiv Detail & Related papers (2024-02-19T21:45:55Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters.
We propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier.
Our results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs.
arXiv Detail & Related papers (2023-10-19T15:40:00Z) - Automated Repair of Declarative Software Specifications in the Era of
Large Language Models [12.995301758524935]
We assess the effectiveness of utilizing OpenAI's ChatGPT to repair software specifications written in the Alloy declarative language.
Our study revealed that while ChatGPT falls short in comparison to existing techniques, it was able to successfully repair bugs that no other technique could address.
arXiv Detail & Related papers (2023-10-19T02:30:42Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models.
We propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models.
arXiv Detail & Related papers (2023-07-25T14:20:51Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - DialFact: A Benchmark for Fact-Checking in Dialogue [56.63709206232572]
We construct DialFact, a benchmark dataset of 22,245 annotated conversational claims, paired with pieces of evidence from Wikipedia.
We find that existing fact-checking models trained on non-dialogue data like FEVER fail to perform well on our task.
We propose a simple yet data-efficient solution to effectively improve fact-checking performance in dialogue.
arXiv Detail & Related papers (2021-10-15T17:34:35Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
We collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data.
Results confirm that the performance of all tested models is affected but the degree of impact varies.
arXiv Detail & Related papers (2020-05-12T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.