You Can Generate It Again: Data-to-Text Generation with Verification and Correction Prompting
- URL: http://arxiv.org/abs/2306.15933v2
- Date: Sun, 03 Aug 2025 20:48:55 GMT
- Title: You Can Generate It Again: Data-to-Text Generation with Verification and Correction Prompting
- Authors: Xuan Ren, Zeyu Zhang, Lingqiao Liu,
- Abstract summary: Small language models like T5 excel in generating high-quality text for data-to-text tasks.<n>They frequently miss keywords, which is considered one of the most severe and common errors in this task.<n>We explore the potential of using feedback systems to enhance semantic fidelity in smaller language models for data-to-text generation tasks.
- Score: 24.738004421537926
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Small language models like T5 excel in generating high-quality text for data-to-text tasks, offering adaptability and cost-efficiency compared to Large Language Models (LLMs). However, they frequently miss keywords, which is considered one of the most severe and common errors in this task. In this work, we explore the potential of using feedback systems to enhance semantic fidelity in smaller language models for data-to-text generation tasks, through our Verification and Correction Prompting (VCP) approach. In the inference stage, our approach involves a multi-step process, including generation, verification, and regeneration stages. During the verification stage, we implement a simple rule to check for the presence of every keyword in the prediction. Recognizing that this rule can be inaccurate, we have developed a carefully designed training procedure, which enabling the model to incorporate feedback from the error-correcting prompt effectively, despite its potential inaccuracies. The VCP approach effectively reduces the Semantic Error Rate (SER) while maintaining the text's quality.
Related papers
- CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation [31.469511576774252]
We propose a context-aware adaptive decoding method for large language models.<n>Our approach achieves a 2.8 percent average improvement on TruthfulQA.<n>Our model-agnostic, scalable, and efficient method requires only a single generation pass.
arXiv Detail & Related papers (2025-08-04T08:28:25Z) - Chain of Correction for Full-text Speech Recognition with Large Language Models [21.37485126269991]
Chain of Correction (CoC) for full-text error correction with Large Language Models (LLMs)<n>CoC corrects errors segment by segment using pre-recognized text as guidance within a regular multi-turn chat format.<n>We analyze how to set the correction threshold to balance under-correction and over-rephrasing.
arXiv Detail & Related papers (2025-04-02T09:06:23Z) - SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation [55.61004653386632]
Large Language Models (LLMs) often produce hallucinations, i.e., information that is unfaithful or not grounded in the input context.<n>This paper introduces a novel self-supervised method for generating a training set of unfaithful samples.<n>We then refine the model using a training process that encourages the generation of grounded outputs over unfaithful ones.
arXiv Detail & Related papers (2025-02-19T12:31:58Z) - Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
We show that Generative Error Correction models struggle to generalize beyond the specific types of errors encountered during training.
We propose DARAG, a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios.
Our approach is simple, scalable, and both domain- and language-agnostic.
arXiv Detail & Related papers (2024-10-17T04:00:29Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors [11.07539342949602]
We propose an end-to-end framework for detecting factual errors in text summarization.
Our framework uses a diverse set of LLM prompts to identify factual inconsistencies.
We calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination.
arXiv Detail & Related papers (2024-06-18T18:59:37Z) - Distilling and Retrieving Generalizable Knowledge for Robot Manipulation via Language Corrections [45.420679219101245]
We present Distillation and Retrieval of Online Corrections (DROC)
DROC is a large language model (LLM)-based system that can respond to arbitrary forms of language feedback.
We demonstrate that DROC effectively distills the relevant information from the sequence of online corrections in a knowledge base.
arXiv Detail & Related papers (2023-11-17T18:00:20Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
Large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines.
Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations'
In this work, we fine-tune language models to be more factual, without human labeling.
arXiv Detail & Related papers (2023-11-14T18:59:15Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
arXiv Detail & Related papers (2023-06-05T01:36:39Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - DiffusER: Discrete Diffusion via Edit-based Reconstruction [88.62707047517914]
DiffusER is an edit-based generative model for text based on denoising diffusion models.
It can rival autoregressive models on several tasks spanning machine translation, summarization, and style transfer.
It can also perform other varieties of generation that standard autoregressive models are not well-suited for.
arXiv Detail & Related papers (2022-10-30T16:55:23Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length.
Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms.
We propose two simple techniques to reduce these correlations in training sets.
arXiv Detail & Related papers (2022-10-06T19:00:51Z) - Text Generation with Text-Editing Models [78.03750739936956]
This tutorial provides a comprehensive overview of text-editing models and current state-of-the-art approaches.
We discuss challenges related to productionization and how these models can be used to mitigate hallucination and bias.
arXiv Detail & Related papers (2022-06-14T17:58:17Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
We propose an efficient factual error correction system RFEC based on entities retrieval post-editing process.
RFEC retrieves the evidence sentences from the original document by comparing the sentences with the target summary.
Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences.
arXiv Detail & Related papers (2022-04-18T11:35:02Z) - Empirical Error Modeling Improves Robustness of Noisy Neural Sequence
Labeling [26.27504889360246]
We propose an empirical error generation approach that employs a sequence-to-sequence model trained to perform translation from error-free to erroneous text.
To overcome the data sparsity problem that exacerbates in the case of imperfect textual input, we learned noisy language model-based embeddings.
Our approach outperformed the baseline noise generation and error correction techniques on the erroneous sequence labeling data sets.
arXiv Detail & Related papers (2021-05-25T12:15:45Z) - Factual Error Correction for Abstractive Summarization Models [41.77317902748772]
We propose a post-editing corrector module to correct factual errors in generated summaries.
We show that our model is able to correct factual errors in summaries generated by other neural summarization models.
We also find that transferring from artificial error correction to downstream settings is still very challenging.
arXiv Detail & Related papers (2020-10-17T04:24:16Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z) - Towards Minimal Supervision BERT-based Grammar Error Correction [81.90356787324481]
We try to incorporate contextual information from pre-trained language model to leverage annotation and benefit multilingual scenarios.
Results show strong potential of Bidirectional Representations from Transformers (BERT) in grammatical error correction task.
arXiv Detail & Related papers (2020-01-10T15:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.