論文の概要: Temporal Graph ODEs for Irregularly-Sampled Time Series
- arxiv url: http://arxiv.org/abs/2404.19508v1
- Date: Tue, 30 Apr 2024 12:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:15:27.640010
- Title: Temporal Graph ODEs for Irregularly-Sampled Time Series
- Title(参考訳): 不規則にサンプリングされた時系列の時間グラフ ODE
- Authors: Alessio Gravina, Daniele Zambon, Davide Bacciu, Cesare Alippi,
- Abstract要約: 時間的グラフ正規微分方程式(TG-ODE)フレームワークを導入し,時間的および空間的ダイナミクスをグラフストリームから学習する。
提案手法をいくつかのグラフベンチマークで実証的に検証し、不規則なグラフストリームタスクにおいてTG-ODEが最先端の性能を達成可能であることを示す。
- 参考スコア(独自算出の注目度): 32.68671699403658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern graph representation learning works mostly under the assumption of dealing with regularly sampled temporal graph snapshots, which is far from realistic, e.g., social networks and physical systems are characterized by continuous dynamics and sporadic observations. To address this limitation, we introduce the Temporal Graph Ordinary Differential Equation (TG-ODE) framework, which learns both the temporal and spatial dynamics from graph streams where the intervals between observations are not regularly spaced. We empirically validate the proposed approach on several graph benchmarks, showing that TG-ODE can achieve state-of-the-art performance in irregular graph stream tasks.
- Abstract(参考訳): 現代のグラフ表現学習は主に、定期的にサンプリングされた時間グラフスナップショットを扱うという仮定の下で機能する。
この制限に対処するため,時間的グラフ正規微分方程式(TG-ODE)フレームワークを導入する。
提案手法をいくつかのグラフベンチマークで実証的に検証し、不規則なグラフストリームタスクにおいてTG-ODEが最先端の性能を達成可能であることを示す。
関連論文リスト
- State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
深層グラフ学習の研究は、動的挙動を示す実世界の複雑なシステムに応答して、静的グラフから時間グラフへ移行した。
RNNやTransformerのようなシーケンスモデルは、このような時間グラフをモデル化するための主要なバックボーンネットワークである。
時間グラフのダイナミクスをモデル化するためのグラフ状態空間モデルであるGraphSSMを開発した。
論文 参考訳(メタデータ) (2024-06-03T02:56:11Z) - Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
グラフ表現学習(ネットワーク埋め込みとも呼ばれる)は、様々なレベルの粒度で広く研究されている。
本稿では,このギャップに対処する時間グラフレベルの埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T01:50:37Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4Iモデルは、不規則な時間ステップとグラフの部分的な観察の両方を扱うように設計されている。
時間連続力学により、任意の時間ステップでモデルを予測できる。
交通・気候モデルによるシミュレーションデータと実世界のデータの実験は、グラフ構造と時間連続力学の両方の有用性を検証する。
論文 参考訳(メタデータ) (2023-02-16T16:47:55Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Continuous Temporal Graph Networks for Event-Based Graph Data [41.786721257905555]
本研究では、時間グラフデータの連続的ダイナミクスを捉えるために、CTGN(Continuous Temporal Graph Networks)を提案する。
鍵となる考え方は、ニューラルネットワークの常微分方程式(ODE)を用いて、動的グラフ上のノード表現の連続的ダイナミクスを特徴づけることである。
帰納的タスクと帰納的タスクの両方の実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-31T16:17:02Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。