A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- URL: http://arxiv.org/abs/2404.19513v2
- Date: Tue, 27 Aug 2024 10:50:13 GMT
- Title: A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- Authors: Sho Ueda, Xujun Ye,
- Abstract summary: Early detection of fertilizer-induced stress in tomato plants is crucial for timely crop management interventions and yield optimization.
This study proposes a novel, noninvasive technique for quantifying the density of trichomes-elongated hair-like structures found on plant surfaces-on young leaves using a smartphone.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of fertilizer-induced stress in tomato plants is crucial for timely crop management interventions and yield optimization. Conventional optical methods detect fertilizer stress in young leaves with difficulty. This study proposes a novel, noninvasive technique for quantifying the density of trichomes-elongated hair-like structures found on plant surfaces-on young leaves using a smartphone. This method exhibits superior detection latency, enabling earlier and more accurate identification of fertilizer stress in tomato plants. Our approach combines augmented reality technology and image processing algorithms to analyze smartphone images of a specialized measurement paper. This measurement paper is applied to a tomato leaf to transfer trichomes onto its adhesive surface. The captured images are then processed through a pipeline involving region of interest extraction, perspective transformation, and illumination correction. Trichome detection and spatial distribution analysis of these preprocessed images yield a robust density metric. We validated our method through experiments on hydroponically grown tomatoes under varying fertilizer concentrations. Using leave-one-out cross-validation (LOOCV), our model achieves a mean area under the precision-recall curve of 0.824 and a receiver operating characteristic curve of 0.641 for predicting additional fertilization needs. Based on LOOCV, quantitative analysis revealed a strong relationship between trichome density and explanatory variables, including nitrate ion concentration, explaining 62.48% of the variation ($R^2 = 0.625$). The predicted and actual trichome densities were strongly correlated ($r = 0.794$). This straightforward and cost-effective method overcomes the limitations of traditional techniques, demonstrating the potential of using smartphones for practical plant nutrition diagnosis.
Related papers
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images.
The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves.
AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems.
arXiv Detail & Related papers (2024-10-01T19:32:45Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection.
We present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network.
arXiv Detail & Related papers (2023-12-26T20:47:23Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
We propose PlantPlotGAN, a physics-informed generative model capable of creating synthetic multispectral plot images with realistic vegetation indices.
The results demonstrate that the synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art methods regarding the Fr'echet inception distance.
arXiv Detail & Related papers (2023-10-27T16:56:28Z) - Look how they have grown: Non-destructive Leaf Detection and Size
Estimation of Tomato Plants for 3D Growth Monitoring [4.303287713669109]
In this paper, an automated non-destructive imaged-based measuring system is presented.
It uses 2D and 3D data obtained using a Zivid 3D camera, creating 3D virtual representations (digital twins) of the tomato plants.
The performance of the platform has been measured through a comprehensive trial on real-world tomato plants.
arXiv Detail & Related papers (2023-04-07T12:16:10Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.