論文の概要: Neural Dynamic Data Valuation
- arxiv url: http://arxiv.org/abs/2404.19557v2
- Date: Tue, 28 May 2024 02:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:39:49.539465
- Title: Neural Dynamic Data Valuation
- Title(参考訳): ニューラルネットワークによる動的データ評価
- Authors: Zhangyong Liang, Huanhuan Gao, Ji Zhang,
- Abstract要約: ニューラルダイナミックデータ評価(NDDV)という最適制御の観点から,新しいデータ評価手法を提案する。
本手法は,データ最適制御状態の感度を用いて,データ評価を正確に識別する理論的解釈を持つ。
さらに,データポイントのユニークな特徴を捉え,データポイントと平均場状態の相互作用による公平性を確保するために,データ再重み付け戦略を実装した。
- 参考スコア(独自算出の注目度): 4.286118155737111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data constitute the foundational component of the data economy and its marketplaces. Efficient and fair data valuation has emerged as a topic of significant interest.\ Many approaches based on marginal contribution have shown promising results in various downstream tasks. However, they are well known to be computationally expensive as they require training a large number of utility functions, which are used to evaluate the usefulness or value of a given dataset for a specific purpose. As a result, it has been recognized as infeasible to apply these methods to a data marketplace involving large-scale datasets. Consequently, a critical issue arises: how can the re-training of the utility function be avoided? To address this issue, we propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV). Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state. In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states. Notably, our method requires only training once to estimate the value of all data points, significantly improving the computational efficiency. We conduct comprehensive experiments using different datasets and tasks. The results demonstrate that the proposed NDDV method outperforms the existing state-of-the-art data valuation methods in accurately identifying data points with either high or low values and is more computationally efficient.
- Abstract(参考訳): データ・エコノミーとその市場の基礎的な構成要素はデータ・エコノミーである。
効率的で公正なデータ評価が、重要な関心事のトピックとして浮上している。
> 限界貢献に基づく多くのアプローチは、様々な下流タスクにおいて有望な結果を示している。
しかしながら、特定の目的のために与えられたデータセットの有用性や価値を評価するために使用される、多数のユーティリティ関数のトレーニングを必要とするため、計算コストが広く知られている。
その結果、大規模なデータセットを含むデータマーケットプレースにこれらの手法を適用することは不可能であると認識されている。
その結果、重要な問題が発生する: ユーティリティ関数の再トレーニングをどうやって回避できるのか?
この問題に対処するために,ニューラルダイナミックデータ評価(NDDV)と呼ばれる最適制御の観点から,新しいデータ評価手法を提案する。
本手法は,データ最適制御状態の感度を用いて,データ評価を正確に識別する理論的解釈を持つ。
さらに,データポイントのユニークな特徴を捉え,データポイントと平均場状態の相互作用による公平性を確保するために,データ再重み付け戦略を実装した。
特に,本手法では,すべてのデータポイントの値を推定するために1回のみのトレーニングが必要であり,計算効率が大幅に向上する。
さまざまなデータセットとタスクを使用して包括的な実験を行います。
その結果,提案手法は既存の最先端データ評価手法よりも高い値または低値のデータポイントを正確に同定し,より計算効率がよいことを示す。
関連論文リスト
- Data Valuation by Leveraging Global and Local Statistical Information [25.911043100052588]
グローバルとローカルの両方の値分布が、機械学習の文脈におけるデータ評価に有意な可能性を秘めていることを示す。
提案手法は,探索された分布特性を既存手法であるAMEに組み込むことで,Shapley値を推定する新しいデータ評価手法であるAMEを提案する。
また,グローバルな値分布と局所的な値分布の情報を統合した最適化問題を定式化することにより,動的データ評価問題に対処する新たな経路を提案する。
論文 参考訳(メタデータ) (2024-05-23T08:58:08Z) - Data Valuation with Gradient Similarity [1.997283751398032]
データ評価アルゴリズムは、与えられた予測タスクへの貢献または重要性に基づいて、データセット内の各サンプルの価値を定量化する。
DVGS(Data Valuation with Gradient similarity)と呼ばれる既存の手法に代わる単純な方法を提案する。
当社のアプローチでは,低品質なデータを迅速かつ正確に識別することが可能で,データクリーニング作業における専門家の知識や手作業による介入の必要性を低減できる。
論文 参考訳(メタデータ) (2024-05-13T22:10:00Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and
Data Attribution [67.28273187033693]
アモート化(amortization)と呼ばれる,所望の出力を直接予測するネットワークのトレーニングは安価で,驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - OpenDataVal: a Unified Benchmark for Data Valuation [38.15852021170501]
OpenDataValは、データバリュエーションのための、使いやすく、統一されたベンチマークフレームワークです。
OpenDataValは、11種類の最先端データバリュエーションアルゴリズムを含む統合環境を提供する。
我々はOpenDataValを用いてベンチマーク分析を行い、最先端データ評価手法の有効性を定量化し比較する。
論文 参考訳(メタデータ) (2023-06-18T14:38:29Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
我々は、下流学習アルゴリズムに不利な方法でトレーニングデータを評価できる新しいフレームワークを導入する。
本研究では,訓練と検証セット間の非伝統的なクラスワイドワッサースタイン距離に基づいて,トレーニングセットに関連する検証性能のプロキシを開発する。
距離は、特定のリプシッツ条件下での任意のモデルに対する検証性能の上限を特徴付けることを示す。
論文 参考訳(メタデータ) (2023-04-28T19:05:16Z) - Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value [17.340091573913316]
本研究では,バッジモデルのためのデータ評価手法であるData-OOBを提案する。
Data-OOBは、評価に106ドルのサンプルがあり、入力寸法が100である場合、1つのCPUプロセッサで2.25時間未満である。
提案手法は,誤ラベル付きデータを識別し,有用な(あるいは有害な)データポイントの集合を見出すことで,既存の最先端データ評価手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2023-04-16T08:03:58Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
列内の異なる値の数(NDV)を推定することは、データベースシステムにおける多くのタスクに有用である。
本研究では、ランダム(オンライン/オフライン)サンプルから正確なNDV推定を導出する方法に焦点を当てる。
教師付き学習フレームワークにおいて,NDV推定タスクを定式化し,モデルを推定対象として学習することを提案する。
論文 参考訳(メタデータ) (2022-02-06T15:42:04Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。