論文の概要: A Spatio-Temporal based Frame Indexing Algorithm for QoS Improvement in Live Low-Motion Video Streaming
- arxiv url: http://arxiv.org/abs/2404.19574v1
- Date: Tue, 30 Apr 2024 14:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:05:41.193046
- Title: A Spatio-Temporal based Frame Indexing Algorithm for QoS Improvement in Live Low-Motion Video Streaming
- Title(参考訳): リアルタイムビデオストリーミングにおけるQoS改善のための時空間フレームインデックスアルゴリズム
- Authors: Adewale Emmanuel Adedokun, Muhammed Bashir Abdulrazak, Muyideen Momoh Omuya, Habeeb BelloSalau, Bashir Olaniyi Sadiq,
- Abstract要約: 本稿では、撮影した低速度ビデオの冗長性を排除し、検出する手法を提案する。
その結果,バッファサイズと圧縮比は5.13%,15.8%,15.6%向上した。
フレーム構築時間のトレードオフはあるものの、標準のローカルフレームインデックスは、それぞれ10.8%と8.71%で提案されたスキームを上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Real-time video life streaming of events over a network continued to gain more popularity among the populace. However, there is need to ensure the judicious utilization of allocated bandwidth without compromising the Quality of Service (QoS) of the system. In this regard, this paper presents an approach based on spatio-temporal frame indexing that detects and eliminate redundancy within and across captured frame, prior transmission from the server to clients. The standard and local low motion videos were the two scenarios considered in evaluating the performance of the proposed algorithm. Results obtained showed that the proposed approach achieved an improvement of 5.13%, 15.8% and 5%, 15.6% improvement in terms of the buffer size and compression ratio. Though with a tradeoff of the frame-built time, where both the standard and local frame indexing outperforms the proposed scheme with 10.8% and 8.71% respectively.
- Abstract(参考訳): ネットワーク上のイベントのリアルタイムビデオストリーミングは、大衆の間で人気を博し続けた。
しかし、システムの品質(QoS)を損なうことなく、割り当てられた帯域の司法的利用を確保する必要がある。
本稿では,サーバからクライアントへの送信前のフレーム内およびフレーム間の冗長性を検知し,排除する,時空間のインデックス化に基づくアプローチを提案する。
提案アルゴリズムの性能評価において考慮すべき2つのシナリオは, 標準的なローモーションビデオとローカルローモーションビデオである。
その結果, バッファサイズと圧縮比は5.13%, 15.8%, 5%, 15.6%改善した。
フレーム構築時間のトレードオフはあるものの、標準フレームインデックスとローカルフレームインデックスの両方がそれぞれ10.8%と8.71%で提案されたスキームを上回っている。
関連論文リスト
- Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - IDO-VFI: Identifying Dynamics via Optical Flow Guidance for Video Frame
Interpolation with Events [14.098949778274733]
イベントカメラは、フレーム間のダイナミクスを極めて高い時間分解能で捉えるのに最適である。
IDO-VFIというイベント・アンド・フレームベースのビデオフレーム方式を提案する。
提案手法は,Vimeo90Kデータセット上での計算時間と計算労力をそれぞれ10%と17%削減しつつ,高品質な性能を維持する。
論文 参考訳(メタデータ) (2023-05-17T13:22:21Z) - Neighbourhood Representative Sampling for Efficient End-to-end Video
Quality Assessment [60.57703721744873]
リアルタイムビデオの高解像度化は、VQA(Deep Video Quality Assessment)の効率性と精度のジレンマを示す
そこで本研究では,空間時空間格子型ミニキューブサンプリング(St-GMS)を統一的に提案し,新しいタイプのフラグメントを抽出する。
フラグメントとFANetにより、提案された効率的なエンドツーエンドのFAST-VQAとFasterVQAは、既存のVQAベンチマークよりも大幅にパフォーマンスが向上した。
論文 参考訳(メタデータ) (2022-10-11T11:38:07Z) - Distortion-Aware Network Pruning and Feature Reuse for Real-time Video
Segmentation [49.17930380106643]
本稿では,リアルタイム視覚タスクのスキップ接続によるアーキテクチャの高速化を目的とした新しいフレームワークを提案する。
具体的には、各フレームの到着時に、前のフレームから特徴を変換し、特定の空間的ビンで再利用する。
次に、現在のフレームの領域におけるバックボーンネットワークの部分計算を行い、現在のフレームと前のフレームの時間差をキャプチャする。
論文 参考訳(メタデータ) (2022-06-20T07:20:02Z) - Efficient Per-Shot Convex Hull Prediction By Recurrent Learning [50.94452824380868]
本稿では,コンテンツ認識凸船体予測の深層学習に基づく手法を提案する。
再帰的畳み込みネットワーク(RCN)を用いて,映像の複雑さを暗黙的に解析し,その凸殻を予測する。
実験の結果,提案したモデルでは,最適凸殻の近似精度が向上し,既存の手法と比較して競争時間の節約が期待できることがわかった。
論文 参考訳(メタデータ) (2022-06-10T05:11:02Z) - AuxAdapt: Stable and Efficient Test-Time Adaptation for Temporally
Consistent Video Semantic Segmentation [81.87943324048756]
ビデオセグメンテーションでは、フレーム間で時間的に一貫した結果を生成することは、フレームワイドの精度を達成するのと同じくらい重要である。
既存の方法は、時間的整合性を達成するために、テストデータによる光フローの正則化や微調整に依存している。
本稿では、ほとんどのニューラルネットワークモデルの時間的一貫性を改善するために、効率的で直感的で教師なしのオンライン適応手法であるAuxAdaptを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:07:41Z) - A Backbone Replaceable Fine-tuning Framework for Stable Face Alignment [21.696696531924374]
そこで本稿では,時空間情報を利用して不正確なランドマークを抑えるジッタロス関数を提案する。
提案手法は安定性評価の指標を40%以上改善する。
モデル全体をリトレーニングすることなく、素早く顔画像のランドマーク検出器を、ビデオのためのより良いパフォーマンスの検出器に変換することができる。
論文 参考訳(メタデータ) (2020-10-19T13:40:39Z) - Capturing Video Frame Rate Variations via Entropic Differencing [63.749184706461826]
一般化ガウス分布モデルに基づく新しい統計エントロピー差分法を提案する。
提案手法は,最近提案されたLIVE-YT-HFRデータベースにおいて,主観的スコアと非常によく相関する。
論文 参考訳(メタデータ) (2020-06-19T22:16:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。