Cybersecurity Pathways Towards CE-Certified Autonomous Forestry Machines
- URL: http://arxiv.org/abs/2404.19643v1
- Date: Tue, 30 Apr 2024 15:44:57 GMT
- Title: Cybersecurity Pathways Towards CE-Certified Autonomous Forestry Machines
- Authors: Mazen Mohamad, Ramana Reddy Avula, Peter Folkesson, Pierre Kleberger, Aria Mirzai, Martin Skoglund, Marvin Damschen,
- Abstract summary: We identify challenges towards CE-certified autonomous forestry machines focusing on cybersecurity and safety.
We discuss the relationship between safety and cybersecurity risk assessment and their relation to AI.
- Score: 0.1396038187727205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increased importance of cybersecurity in autonomous machinery is becoming evident in the forestry domain. Forestry worksites are becoming more complex with the involvement of multiple systems and system of systems. Hence, there is a need to investigate how to address cybersecurity challenges for autonomous systems of systems in the forestry domain. Using a literature review and adapting standards from similar domains, as well as collaborative sessions with domain experts, we identify challenges towards CE-certified autonomous forestry machines focusing on cybersecurity and safety. Furthermore, we discuss the relationship between safety and cybersecurity risk assessment and their relation to AI, highlighting the need for a holistic methodology for their assurance.
Related papers
- Cyber security of OT networks: A tutorial and overview [1.4361933642658902]
This manuscript explores the cybersecurity challenges of Operational Technology (OT) networks.
OT systems increasingly integrate with Information Technology (IT) systems due to Industry 4.0 initiatives.
The study examines key components of OT systems, such as SCADA (Supervisory Control and Data Acquisition), PLCs (Programmable Logic Controllers), and RTUs (Remote Terminal Units)
arXiv Detail & Related papers (2025-02-19T17:23:42Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Security by Design Issues in Autonomous Vehicles [0.7999703756441756]
This research outlines the diverse security layers, spanning physical, cyber, coding, and communication aspects, in the context of AVs.
We provide insights into potential solutions for each potential attack vector, ensuring that autonomous vehicles remain secure and resilient in an evolving threat landscape.
arXiv Detail & Related papers (2025-01-07T19:24:11Z) - Collaborative Approaches to Enhancing Smart Vehicle Cybersecurity by AI-Driven Threat Detection [0.0]
The automotive industry increasingly adopts connected and automated vehicles (CAVs)
With the emergence of new vulnerabilities and security requirements, the integration of advanced technologies presents promising avenues for enhancing CAV cybersecurity.
The roadmap for cybersecurity in autonomous vehicles emphasizes the importance of efficient intrusion detection systems and AI-based techniques.
arXiv Detail & Related papers (2024-12-31T04:08:42Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - Future Vision of Dynamic Certification Schemes for Autonomous Systems [3.151005833357807]
We identify several issues with the current certification strategies that could pose serious safety risks.
We highlight the inadequate reflection of software changes in constantly evolving systems and the lack of support for systems' cooperation.
Other shortcomings include the narrow focus of awarded certification, neglecting aspects such as the ethical behavior of autonomous software systems.
arXiv Detail & Related papers (2023-08-20T19:06:57Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.