PCA for Point Processes
- URL: http://arxiv.org/abs/2404.19661v1
- Date: Tue, 30 Apr 2024 15:57:18 GMT
- Title: PCA for Point Processes
- Authors: Franck Picard, Vincent Rivoirard, Angelina Roche, Victor Panaretos,
- Abstract summary: We introduce a novel statistical framework for the analysis of replicated point processes.
By treating point process realizations as random measures, we adopt a functional analysis perspective.
Key theoretical contributions include establishing a Karhunen-Loeve expansion for the random measures.
- Score: 3.4248731707266264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel statistical framework for the analysis of replicated point processes that allows for the study of point pattern variability at a population level. By treating point process realizations as random measures, we adopt a functional analysis perspective and propose a form of functional Principal Component Analysis (fPCA) for point processes. The originality of our method is to base our analysis on the cumulative mass functions of the random measures which gives us a direct and interpretable analysis. Key theoretical contributions include establishing a Karhunen-Lo\`{e}ve expansion for the random measures and a Mercer Theorem for covariance measures. We establish convergence in a strong sense, and introduce the concept of principal measures, which can be seen as latent processes governing the dynamics of the observed point patterns. We propose an easy-to-implement estimation strategy of eigenelements for which parametric rates are achieved. We fully characterize the solutions of our approach to Poisson and Hawkes processes and validate our methodology via simulations and diverse applications in seismology, single-cell biology and neurosiences, demonstrating its versatility and effectiveness. Our method is implemented in the pppca R-package.
Related papers
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis [0.1558630944877332]
This work introduces a comprehensive approach to elucidate the deposition process regimes in Chemical Vapor Deposition (CVD) reactors.
Our methodology relies on process outcomes, derived by a detailed CFD model, to identify clusters of "outcomes" corresponding to distinct process regimes.
This phenomenon is experimentally validated through Arrhenius plot analysis, affirming the efficacy of our approach.
arXiv Detail & Related papers (2024-05-24T14:10:22Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Functional Generalized Canonical Correlation Analysis for studying
multiple longitudinal variables [0.9208007322096533]
Functional Generalized Canonical Correlation Analysis (FGCCA) is a new framework for exploring associations between multiple random processes observed jointly.
We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components.
We present a use case on a longitudinal dataset and evaluate the method's efficiency in simulation studies.
arXiv Detail & Related papers (2023-10-11T09:21:31Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
We propose a new tractable inference scheme based on an entropic matching framework.
We demonstrate the effectiveness of our method by providing closed-form results for a simple family of approximate distributions.
We derive expressions for point estimation of the underlying parameters using an approximate expectation procedure.
arXiv Detail & Related papers (2023-09-27T12:07:21Z) - MUC-driven Feature Importance Measurement and Adversarial Analysis for
Random Forest [1.5896078006029473]
We leverage formal methods and logical reasoning to develop a novel model-specific method for explaining the prediction of Random Forest (RF)
Our approach is centered around Minimal Unsatisfiable Cores (MUC) and provides a comprehensive solution for feature importance, covering local and global aspects, and adversarial sample analysis.
Our method can produce a user-centered report, which helps provide recommendations in real-life applications.
arXiv Detail & Related papers (2022-02-25T06:15:47Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
We propose a methodology for analyzing POMCP policies by inspecting their traces.
The proposed method explores local properties of policy behavior to identify unexpected decisions.
We evaluate our approach on Tiger, a standard benchmark for POMDPs, and a real-world problem related to mobile robot navigation.
arXiv Detail & Related papers (2020-12-23T15:09:28Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.