Equivariant Action Sampling for Reinforcement Learning and Planning
- URL: http://arxiv.org/abs/2412.12237v1
- Date: Mon, 16 Dec 2024 17:51:14 GMT
- Title: Equivariant Action Sampling for Reinforcement Learning and Planning
- Authors: Linfeng Zhao, Owen Howell, Xupeng Zhu, Jung Yeon Park, Zhewen Zhang, Robin Walters, Lawson L. S. Wong,
- Abstract summary: Reinforcement learning algorithms for continuous control tasks require accurate sampling-based action selection.
This work addresses the challenge of preserving symmetry in sampling-based planning and control.
We introduce an action sampling approach that enforces the desired symmetry.
- Score: 24.423370812881153
- License:
- Abstract: Reinforcement learning (RL) algorithms for continuous control tasks require accurate sampling-based action selection. Many tasks, such as robotic manipulation, contain inherent problem symmetries. However, correctly incorporating symmetry into sampling-based approaches remains a challenge. This work addresses the challenge of preserving symmetry in sampling-based planning and control, a key component for enhancing decision-making efficiency in RL. We introduce an action sampling approach that enforces the desired symmetry. We apply our proposed method to a coordinate regression problem and show that the symmetry aware sampling method drastically outperforms the naive sampling approach. We furthermore develop a general framework for sampling-based model-based planning with Model Predictive Path Integral (MPPI). We compare our MPPI approach with standard sampling methods on several continuous control tasks. Empirical demonstrations across multiple continuous control environments validate the effectiveness of our approach, showcasing the importance of symmetry preservation in sampling-based action selection.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - PCA for Point Processes [3.4248731707266264]
We introduce a novel statistical framework for the analysis of replicated point processes.
By treating point process realizations as random measures, we adopt a functional analysis perspective.
Key theoretical contributions include establishing a Karhunen-Loeve expansion for the random measures.
arXiv Detail & Related papers (2024-04-30T15:57:18Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
We propose a novel $K$-nearest neighbor reparametric procedure for estimating the performance of a policy from historical data.
Our analysis allows for the sampling of entire episodes, as is common practice in most applications.
Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization, and does not explicitly assume a parametric model for the environment's dynamics.
arXiv Detail & Related papers (2023-06-07T23:55:12Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
Sampling-based approaches to Model Predictive Control (MPC) have become a cornerstone of contemporary approaches to MPC.
We propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution.
Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time.
arXiv Detail & Related papers (2022-12-05T20:35:36Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.