ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2404.19665v1
- Date: Tue, 30 Apr 2024 16:00:21 GMT
- Title: ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging
- Authors: Dimitrios Karkalousos, Ivana IĆĄgum, Henk A. Marquering, Matthan W. A. Caan,
- Abstract summary: ATOMMIC is an open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis.
ATOMMIC implements several tasks using DL networks and enables MultiTask Learning (MTL) to perform related tasks integrated, targeting generalization in the MRI domain.
- Score: 0.10434396204054465
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI is revolutionizing MRI along the acquisition and processing chain. Advanced AI frameworks have been developed to apply AI in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. Existing frameworks are often designed to perform tasks independently or are focused on specific models or datasets, limiting generalization. We introduce ATOMMIC, an open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using DL networks and enables MultiTask Learning (MTL) to perform related tasks integrated, targeting generalization in the MRI domain. We first review the current state of AI frameworks for MRI through a comprehensive literature search and by parsing 12,479 GitHub repositories. We benchmark 25 DL models on eight publicly available datasets to present distinct applications of ATOMMIC on accelerated MRI reconstruction, image segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and image segmentation utilizing MTL. Our findings demonstrate that ATOMMIC is the only MTL framework with harmonized complex-valued and real-valued data support. Evaluations on single tasks show that physics-based models, which enforce data consistency by leveraging the physical properties of MRI, outperform other models in reconstructing highly accelerated acquisitions. Physics-based models that produce high reconstruction quality can accurately estimate quantitative parameter maps. When high-performing reconstruction models are combined with robust segmentation networks utilizing MTL, performance is improved in both tasks. ATOMMIC facilitates MRI reconstruction and analysis by standardizing workflows, enhancing data interoperability, integrating unique features like MTL, and effectively benchmarking DL models.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction.
The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features.
Experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors.
arXiv Detail & Related papers (2023-09-12T09:07:03Z) - Learning Sequential Information in Task-based fMRI for Synthetic Data
Augmentation [10.629487323161323]
We propose an approach for generating synthetic fMRI sequences that can be used to create augmented training datasets in downstream learning.
The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task.
arXiv Detail & Related papers (2023-08-29T18:36:21Z) - Holistic Multi-Slice Framework for Dynamic Simultaneous Multi-Slice MRI
Reconstruction [8.02450593595801]
We propose a novel DL-based framework for dynamic SMS reconstruction.
Our main contributions are 1) a combination of data transformation steps and network design that effectively leverages the unique characteristics of undersampled dynamic SMS data, and 2) an MR physics-guided transfer learning strategy that addresses the data scarcity issue.
arXiv Detail & Related papers (2023-01-03T21:09:51Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis [4.056490719080639]
We propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI.
The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality.
arXiv Detail & Related papers (2022-04-08T01:35:19Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Net is a hybrid architecture that combines the beneficial implicit bias and efficiency of convolutions with the power of Transformer blocks in an unrolled and multi-scale network.
Our network establishes new state of the art on the largest publicly available MRI dataset, the fastMRI dataset.
arXiv Detail & Related papers (2022-03-15T19:26:29Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.